[1]刘静平①②,赵金刚①,潘峰①②,等.硬脂酸粉尘爆炸过程中火焰传播试验及数值模拟[J].爆破器材,2016,45(05):11-16.[doi:10.3969/j.issn.1001-8352.2016.05.003]
 LIU Jingping,ZHAO Jingang,PAN Feng,et al.Experiment and Numerical Simulation on Flame Propagation in Stearic Acid Dust Explosion[J].EXPLOSIVE MATERIALS,2016,45(05):11-16.[doi:10.3969/j.issn.1001-8352.2016.05.003]
点击复制

硬脂酸粉尘爆炸过程中火焰传播试验及数值模拟()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
45
期数:
2016年05
页码:
11-16
栏目:
基础理论
出版日期:
2016-09-30

文章信息/Info

Title:
Experiment and Numerical Simulation on Flame Propagation in Stearic Acid Dust Explosion
文章编号:
5081
作者:
刘静平①②赵金刚潘峰①②秋珊珊①②
①南京理工大学化工学院(江苏南京,210094)
②国家民用爆破器材质量监督检验中心(江苏南京,210094)
Author(s):
LIU Jingping①② ZHAO Jingang PAN Feng①② QIU Shanshan①②
①School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②National Quality Supervision and Inspection Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
硬脂酸粉尘爆炸火焰传播火焰温度数值模拟气流速度
Keywords:
stearic acid dust explosion flame propagation flame temperature numerical simulation flow velocity
分类号:
X932;O381
DOI:
10.3969/j.issn.1001-8352.2016.05.003
文献标志码:
A
摘要:
采用试验和数值模拟相结合的方法研究了硬脂酸粉尘火焰在上端开口的圆柱形垂直燃烧管道的传播过程。试验利用高速摄影系统和红外热成像仪记录了火焰的传播过程和温度分布情况,结果表明:火焰传播速度和火焰温度均呈现先增大后减小的趋势。采用Fluent软件计算得到的模拟结果与试验值吻合较好,模拟结果揭示了硬脂酸粉尘爆炸过程中气流速度的变化情况,分析结果表明: 在同一时刻,气流速度高于粉尘火焰传播速度,是造成粉尘二次扬尘,进而产生持续爆炸的重要因素之一。
Abstract:
Flame propagation behavior of stearic acid dust explosion in semi-enclosed vertical combustion tube was studied by experiment and numerical simulation. The results were recorded by a high speed video camera and a thermal infrared imaging device, from which it is observed that the flame propagation velocity and flame temperature both increased at first and then decreased. Simulation results obtained by Fluent software show a good agreement with test results. Simulation results also indicate that flow velocity is higher than flame propagation velocity during the combustion process, which is the main reason for secondary dust formation and successive explosion.

参考文献/References:

[1]GAO W, DOBASHI R, MOGI T, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6): 993-999.
[2]GAO W, MOGI T, Sun J H, et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber [J]. Fuel, 2013, 113: 86-96.
[3]GAO W, MOGI T, Sun J H, et al. Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions [J]. Powder Technology, 2013, 249: 168-174.
[4]CAO W G,CAO W,PENG Y H, et al. Experimental study on the combustion sensitivity parameters and precombusted changes in functional groups of lignite coal dust [J]. Powder Technology, 2015, 283: 512-518.
[5]CAO W G,GAO W, LIANG J Y, et al. Flamepropagation behavior and a dynamic model for the thermal-radiation effects in coal-dust explosions [J]. Journal of Loss Prevention in the Process Industries,2014, 29: 65-71.
[6]曹卫国, 徐森, 梁济元, 等.煤粉尘爆炸过程中火焰的传播特性 [J]. 爆炸与冲击, 2014, 34(5): 586-593.
CAO W G, XU S, LIANG J Y, et al. Characteristics of flame propagation during coal dust cloud explosion [J].Explosion and Shock Waves, 2014, 34(5): 586-593.
[7]AMYOTTE P R, PEGG M J, KHAN F I. Application of inherent safety principles to dust explosion prevention and mitigation [J]. Process Safety and Environmental Protection, 2009, 87(1): 35-39.
[8]PROUST C. A few fundamental aspects about ignition and flame propagation in dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 104-120.
[9]SUN J H,RITSU D,TOSHISUKE H. Velocity and number density profiles of particles across upward and downward flame propagating through iron particle clouds [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 135-141.
[10]YAN X Q, YU J L. Dust explosion venting of small vessels at the elevated static activation overpressure[J]. Powder Technology, 2014, 261: 250-256.
[11]曹卫国, 郑俊杰, 彭于怀, 等. 玉米淀粉粉尘爆炸特性及火焰传播过程的试验研究 [J]. 爆破器材, 2016,45(1):1-6.
 CAO W G, ZHENG J J,PENG Y H, et al. Experimental study on explosion characteristics and flame propagation process of corn starch dust [J]. Explosive Materials, 2016, 45(1):1-6.
[12]周力行. 燃烧理论和化学流体力学[M]. 北京:科学出版社,1986.
[13]杨宏伟,范宝春, 李鸿志. 障碍物和管壁导致火焰加速的三维数值模拟 [J]. 爆炸与冲击,2001, 21(4): 259-264.
 YANG H W, FAN B C, LI H Z. Numerical investigation on threedimensional flame acceleration induced by an obstacle and tube internal walls [J]. Explosion and Shock Waves, 2001, 21(4):259-264.
[14]陈翠梧,苏亚欣. 高温空气燃烧的模型比较数值研究[J]. 工业加热,2010, 39(3):11-14.
CHEN C W, SU Y X. A numerical comparison of the combustion model for high temperature air combustion [J].Industrial Heating, 2010,39(3):11-14.
[15]张晓东,张培林,傅建平,等. k-ε双方程湍流模型对制退机内流场计算的适用性分析 [J]. 爆炸与冲击, 2011,31(5):516-520.
ZHANG X D, ZHANG P L, FU J P, et al. Applicability analysis of k-ε turbulence models on numerical simulation of internal flow field of recoil brake [J]. Explosion and Shock Waves, 2011,31(5):516-520.
[16]董冰岩,彭旭. 柱形压力容器开口泄爆过程数值模拟研究[J]. 中国安全科学学报, 2011,21(11):29-34.
DONG B Y, PENG X. Numeral simulation on venting explosion process of flammable gas in closed cylindrical vessel [J]. China Safety Science Journal, 2011, 21(11):29-34.
[17]章诚, 叶桃红,陈义良,等. 三维加力燃烧室两相湍流燃烧的数值模拟 [J]. 航空动力学报, 2000, 15(4): 397-400.
 ZHANG C, YE T H,CHEN Y L,et al. Numerical simulation of two-phase turbulent combustion in a 3-D afterburner [J]. Journal of Aerospace Power, 2000, 15(4): 397-400.
[18]常峰, 索建秦, 梁红侠, 等. EBU 和 PDF 模型在燃烧室上的应用 [J]. 科学技术与工程, 2012, 12(15): 3699-3702.
 CHANG F, SUO J Q, LIANG H X. The application of the PDF and EBU models using in combustors development [J].Science Technology and Engineering, 2012, 12(15): 3699-3702.

相似文献/References:

[1]章文义①,李玉艳②③,潘峰②③,等.丙烷-氧气预混气体的火焰传播及点火特性[J].爆破器材,2019,48(04):27.[doi:10.3969/j.issn.1001-8352.2019.04.005]
 ZHANG Wenyi,LI Yuyan,PAN Feng,et al.Flame Propagation and Ignition Properties of Propane-Oxygen Premixed Gas[J].EXPLOSIVE MATERIALS,2019,48(05):27.[doi:10.3969/j.issn.1001-8352.2019.04.005]
[2]刘静平①,杨振欣②,赵懿明②,等.褐煤煤尘爆炸火焰传播特性及燃烧热分解机理研究[J].爆破器材,2022,51(06):16.[doi:10.3969/j.issn.1001-8352.2022.06.003]
 LIU Jingping,YANG Zhenxin,ZHAO Yiming,et al.Study on Flame Propagation Characteristics and Combustion Pyrolysis Mechanism of Lignite Dust Explosion[J].EXPLOSIVE MATERIALS,2022,51(05):16.[doi:10.3969/j.issn.1001-8352.2022.06.003]

备注/Memo

备注/Memo:
收稿日期:2016-04-06
基金项目:国家自然科学基金项目(51472119);江苏高校优势学科建设工程二期项目[苏政办发(2004)37号]
作者简介:刘静平(1974-),女,博士研究生,工程师,主要从事工业炸药的分析以及粉尘爆炸等方面的研究。E-mail:liu-jingping@163.com
通信作者:秋珊珊(1981-),女,博士,工程师,主要从事粉尘爆炸以及危险化学品分类方面的研究。E-mail:ppshanshanqiu@126.com
更新日期/Last Update: 2016-09-30