[1]杨俊清①,王桂香①,高贫②,等.1, 3-二叠氮乙酰氧基-2, 2-二叠氮甲基丙烷(PEAA)的结构、性能与热分解机理的理论研究[J].爆破器材,2013,42(06):7-13.[doi:10.3969/j.issn.1001-8352.2013.06.002]
 YANG Junqing,WANG Guixiang,GAO Pin,et al.Theoretical Study on the Structure, Properties, and Thermal Decomposition Mechanism of the Azido Compound 1,3-di(azidoacetoxy)-2,2-di(azidomethyl)Propane (PEAA)[J].EXPLOSIVE MATERIALS,2013,42(06):7-13.[doi:10.3969/j.issn.1001-8352.2013.06.002]
点击复制

1, 3-二叠氮乙酰氧基-2, 2-二叠氮甲基丙烷(PEAA)的结构、性能与热分解机理的理论研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
42
期数:
2013年06
页码:
7-13
栏目:
基础理论
出版日期:
2013-12-20

文章信息/Info

Title:
Theoretical Study on the Structure, Properties, and Thermal Decomposition Mechanism of the Azido Compound 1,3-di(azidoacetoxy)-2,2-di(azidomethyl)Propane (PEAA)
文章编号:
4657
作者:
杨俊清王桂香高贫贡雪东
① 南京理工大学化工学院(江苏南京,210094)
②国家民用爆破器材质量监督检验中心(江苏南京,210094)
Author(s):
YANG Junqing WANG Guixiang GAO Pin GONG Xuedong
① School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②National Quality Supervision and Inspection Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
PEAA晶体结构爆轰性能热分解机理密度泛函理论
Keywords:
PEAA crystal structure detonation performance thermal decomposition mechanism density functional theory
分类号:
O641.12+1
DOI:
10.3969/j.issn.1001-8352.2013.06.002
文献标志码:
A
摘要:
1,3-二叠氮乙酰氧基-2,2-二叠氮甲基丙烷(PEAA)是一种玻璃态转化温度低而含氮量高的叠氮化物,具有作为含能增塑剂的潜在应用价值。文中采用密度泛函理论研究了其分子结构和红外光谱,预测了热力学函数、生成焓、爆轰性能和比冲;采用分子力学方法预测了其晶体结构和晶体密度;计算了多种可能的热解引发键的键解离能。结果表明,PEAA的热分解始于乙酰氧基上叠氮基的N=N键断裂,该过程经氢转移过渡态完成并放出氮气和热量,所需活化能约162 kJ/mol。与已有实际应用的叠氮增塑剂DATH(1,7-二叠氮基-2,4,6-三硝基-2,4,6-三氮杂庚烷)相比,PEAA的热稳定性更好。还考察了PEAA对硝胺改性双基推进剂能量性能的影响,发现无论用PEAA替代其中的NG还是RDX均使体系的能量输出和比冲增大,但体系的爆速和爆压略有降低。
Abstract:
1,3-di(azidoacetoxy)-2,2-di(azidomethyl)propane (PEAA) is an azido compound with a low glass transition temperature and a high nitrogen content. It has a great potential as the candidate of energetic plasticizers. In this paper, the molecular structure, infrared spectrum, thermodynamic functions, enthalpy of formation, detonation perfor mance, and specific impulse of PEAA were studied using the density functional theory. The crystal structure and crystal density were predicted using the molecular mechanics method. The bond dissociation energies of several possible thermal trigger bonds were calculated. Results show that the thermal decomposition of PEAA starts from the rupture of the N =N bond in the azidoacetoxy group. The process is completed synergistically via the transfer of H to the —N3 group to eliminate N2. The required activation energy is about 162 kJ/mol. PEAA has a better thermal stability than DATH (1,7-diazido-2,4,6-trinitro-2,4,6-triazaheptane), an azido plasticizer with practical applications. The influence of PEAA on the perfor mance of the nitramine modified doublebase propellants has been studied. Results show that replacing NG or RDX with PEAA slightly decreases the detonation velocity and detonation pressure, while increases the output energy and specific impulse of the propellants.

参考文献/References:

[1]庞爱民, 吴京汉. 先进的低特征信号推进剂研制 [J]. 现代防御技术, 2000, 28(5): 24-28. 
Pang Aimin, Wu Jinghan. Development of advanced low signature propellants [J]. Modern Defense Technology, 2000, 28(5): 24-28.
[2]李上文, 赵凤起, 袁潮, 等. 国外固体推进剂研究与开发的趋势 [J]. 固体火箭技术, 2002, 25(2): 36-42.
Li Shangwen, Zhao Fengqi, Yuan Chao, et al. Tendency of research and development for overseas solid propellants [J]. Journal of Solid Rocket Technology, 2002, 25(2): 36-42.
[3]李谨卫, 庞爱民, 吴京汉. GAP高能低特征信号推进剂的研究 [J]. 固体火箭技术, 2001, 24(3): 42-46.
 Li Jinwei, Pang Aimin, Wu Jinghan. Study on GAP based high energy, low signature propellant [J]. Journal of Solid Rocket Technology, 2001, 24(3): 42-46.
[4]杨可喜. 叠氮复合固体推进剂技术研究 [J]. 上海航天, 1998 (5): 44-50.
 Yang Kexi. Study on azido composite solid propellant techniques [J]. Aerospace Shanghai, 1998(5): 44-50.
[5]戴仙雅, 杨可喜. 高能高密度材料组成的低信号特征固体推进剂 [J]. 上海航天, 1996(5): 9-14.
 Dai Xianya, Yang Kexi. Minimum signature composite solid propellants containing high energydensity materials [J]. Aerospace Shanghai, 1996(5): 9-14[6]杨可喜, 丁法祥, 戴仙雅, 等. 叠氮增塑剂与黏合剂的相容性 [J]. 固体火箭技术, 1993(1): 25-29.
Yang Kexi, Ding Faxiang, Dai Xianya, et al. The compatibility of azidoplasticizers with binders [J]. Journal of Solid Rocket Technology, 1993(1): 25-29.
[7]Singh H, Khire V. Studies on low vulnerability gun propellents based on conventional binders and energetic plasticizers [J]. International Journal of Energetic Materials and Chemical Propulsion, 2008, 7(3): 187-192.
[8]王娟, 刘大斌, 周新利. 1,4-二叠氮-2,3-二叠氮甲基-2,3-二硝基丁烷的合成 [J]. 爆破器材, 2012, 41(4): 1- 4,8.
 Wang Juan, Liu Dabin, Zhou Xinli. Synthesis of 1,4-diazido-2,3-bis-azidomethyl-2,3-dinitro-butane [J]. Explosive Materials, 2012, 41(4): 1- 4,8.
[9]Drees D, Lffel D, Messmer A, et al. Synthesis and characterization of azido plasticizer [J]. Propellants, Explosives, Pyrotechnics, 1999, 24(3): 159-12.
[10]Kawaguchi S, Kusumoto K, Hisada T, et al. Synthesis of new azido plasticizer [J]. Journal of the Japan Explosives Society, 2000, 61(5): 242-247.[11]Unkelbach G, Keicher T, Krause H. Synthesis and characterization of new triazidoplasticizers [C]//Proceedings of the 36th International Annual Conference of ICT & 32nd International Pyrotechnics Seminar. Karlsruhe Pfinztal, 2005.
[12]王娟, 刘大斌, 周新利. 1,4-二(叠氮乙酰氧基)-2,3-二(叠氮乙酰氧甲基)-2,3-二硝基丁烷的合成 [J]. 爆破器材, 2013, 42(1): 1-4. 
 Wang Juan, Liu Dabin, Zhou Xinli. Synthesis of 1,4-di(azidoacetoxy)-2,3-di(azidoacetoxymethyl)-2, 3-dinitro-butane [J]. Explosive Materials, 2013, 42(1): 1-4.
[13]Pant C S, Wagh R M, Nair J K, et al. Synthesis and characterization of two potential energetic azido esters [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 477-481.
[14]Qiu Shaojun,Fan Huiqing,Gao Chao, et al. An azido ester plasticizer, 1,3-di(azidoacetoxy)-2,2-di(azidomethyl) propane (PEAA): synthesis, characterization and thermal properties [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(3): 205-208.
[15]Frisch M,Trucks G, Schlegel H, et al. Gaussian 03 [CP]. Revision B.03.Pittsburgh:Gaussian Inc.,2003.
[16]Lee C, Yang Weitao, Parr R G. Development of the ColleSalvetti correlationenergy formula into a functional of the electron density [J]. Physical Review B, 1988, 37(2): 785-789.
[17]Becke A D. Densityfunctional thermochemistry. II. the effect of the PerdewWang generalizedgradient correlation correction [J]. Journal of Chemical Physics, 1992, 97(12): 9173-9177.
[18]Mayo S L, Olafson B D, Goddard W A. Dreiding: a generic force field for molecular simulations [J]. The Journal of Physical Chemistry, 1990, 94(26): 8897-8909.
[19]Atkins P P W, Clugston M J. Principles of physical chemistry [M]. Oxford:Oxford University Press, 1982.
[20]Rice B M, Pai S V, Hare J. Predicting heats of formation of energetic materials using quantum mechanical calculations [J]. Combustion and Flame, 1999, 118(3): 445-458.
[21]Politzer P, Ma Yuguang, Lane P, et al. Computational prediction of standard gas, liquid, and solidphase heats of formation and heats of vaporization and sublimation [J]. International Journal of Quantum Chemistry, 2005, 105(4): 341-347.
[22]Byrd E F C, Rice B M. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations [J]. The Journal of Physical Chemistry A, 2006, 110(3): 1005-1013.
[23]Gong X D. Potden v.2.0[CP]. Nanjing: Nanjing University of Science and Technology, 2007.
[24]Kamlet M J, Jacobs S J. Chemistry of detonations. I.a simple method for calculating detonation properties of C-H-N-O explosives [J]. Journal of Chemical Physics, 1968, 48(1): 23-35.
[25]Wang Fang,Du Hongchen,Zhang Jianying, et al. Computational studies on the crystal structure, ther modynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8tetranitro-1,3,5, 7-tetraazacubane as a novel high energy density material [J]. The Journal of Physical Chemistry A, 2011, 115(42): 11788-11795.
[26]Wang Guixiang, Gong Xuedong,Xiao Heming. Theoretical investigation on density, detonation properties, and pyrolysis mechanism of nitro derivatives of benzene and aminobenzenes [J]. International Journal of Quantum Chemistry, 2009, 109(7): 1522-1530.
[27]Zhang Jianying, Du Hongchen, Wang Fang, et al. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane [J]. The Journal of Physical Chemistry A, 2011, 115(24): 6617-6621.
[28]Liu Yan, Wang Lianjun, Wang Guixiang, et al. Theoretical studies on 2-diazo-4,6-dinitrophenol derivatives aimed at finding superior propellants [J]. Journal of Molecular Modeling, 2012, 18(4): 1561-1572.
[29]Politzer P, Murray J, Grice M, et al. Chemistry of energetic materials [M]. New York: Academic Press,1991.
[30]Wang Guixiang, Gong Xuedong, Liu Yan, et al. Looking for high energy density compounds applicable for propellant among the derivatives of DPO with —N3, —ONO2, and —NNO2 groups [J]. Journal of Computational Chemistry, 2011, 32(5): 943-952.
[31]Wang Guixiang, Gong Xuedong, Du Hongchen, et al. Theoretical prediction of properties of aliphatic polynitrates [J]. The Journal of Physical Chemistry A, 2011, 115(5): 795-804.
[32]Hill T L. An introduction to statistical thermodynamics [M]. New York: Dover Publications, 1960.
[33]Scott A P, Radom L. Harmonic vibrational frequencies: an evaluation of HartreeFock, MΦller-Plesset, quadra tic configuration interaction, density functional theory, and semiempirical scale factors [J]. The Journal of Physical Chemistry, 1996, 100(41): 16502-16513.
[34]Wong M W. Vibrational frequency prediction using density functional theory [J]. Chemical Physics Letters, 1996, 256(4-5): 391-399.
[35]Talawar M B, Sivabalan R, Mukundan T, et al. Environmentally compatible next generation green energetic materials (GEMs) [J]. Journal of Hazardous Materials, 2009, 161(2-3): 589-607.
[36]Wang Guixiang, Shi Chunhong, Gong Xuedong, et al. Packing structures and periodic band calculations on DPO (2,5dipicryl1,3,4oxadiazole) [J]. Journal of Hazardous Materials, 2009, 169(1-3): 813-818.
[37]Xu Xiaojuan, Zhu Weihua, Xiao Heming. Molecular packing prediction and periodic calculations on three polynitroadamantanes as potential high energy density compounds [J]. Chinese Journal of Chemistry, 2008, 26(4): 602-606.
[38]Ghule V D, Jadhav P M, Patil R S, et al. Quantumchemical studies on hexaazaisowurtzitanes [J]. The Journal of Physical Chemistry A, 2009, 114(1): 498-503.
[39]张熙和, 云主惠. 爆炸化学[M]. 北京:国防工业出版社, 1989.

相似文献/References:

[1]李金懋①②,王 娟①②.含能增塑剂2,3-二羟甲基-2,3-二硝基-1,4-丁二醇四苯甲酸酯的合成及表征[J].爆破器材,2018,47(02):17.[doi:10.3969/j.issn.1001-8352.2018.02.004]
 LI Jinmao,WANG Juan.Synthesis and Characterization of Energetic Plasticizer-2,3-Bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol Tetrabenzoate[J].EXPLOSIVE MATERIALS,2018,47(06):17.[doi:10.3969/j.issn.1001-8352.2018.02.004]
[2]贾思媛①,张海昊①,张家荣①,等.3-叠氮基-1,3-二硝基氮杂环丁烷的合成工艺改进及性能研究[J].爆破器材,2023,52(05):1.[doi:10.3969/j.issn.1001-8352.2023.05.001]
 JIA Siyuan,ZHANG Haihao,ZHANG Jiarong,et al.Improvement of Synthesis Process and Properties of 3-Azido-1, 3-Dinitroazetidine[J].EXPLOSIVE MATERIALS,2023,52(06):1.[doi:10.3969/j.issn.1001-8352.2023.05.001]

备注/Memo

备注/Memo:
收稿日期:2013-06-18
基金项目:高等学校博士点新教师基金项目(20103219120014),江苏省自然科学基金(BK20130755),南京理工大学“卓越计划、紫金之星”基金项目
作者简介:杨俊清(1988~),女,硕士研究生,主要从事有机含能化合物的理论研究。
通信作者:高    贫(1969~),女,副研究员,主要从事含能物质理化分析和理论研究。
                    贡雪东(1967~),男,教授,主要从事含能材料的理论计算研究。
更新日期/Last Update: 2014-01-03