[1]徐森①,张兴明①,潘峰①,等.工业炸药能量测试方法的分析[J].爆破器材,2013,42(01):18-21.[doi:10.3969/j.issn.1001-8352.2013.01.005]
 XU Sen,ZHANG Xingming,PAN Feng,et al.Analysis on the Energy Testing Methods of Industrial Explosives[J].EXPLOSIVE MATERIALS,2013,42(01):18-21.[doi:10.3969/j.issn.1001-8352.2013.01.005]
点击复制

工业炸药能量测试方法的分析()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
42
期数:
2013年01
页码:
18-21
栏目:
基础理论
出版日期:
2013-02-20

文章信息/Info

Title:
Analysis on the Energy Testing Methods of Industrial Explosives
文章编号:
4557
作者:
徐森张兴明潘峰张建新
① 南京理工大学化工学院(江苏南京,210094)
②国家民用爆破器材质量监督检验中心(江苏南京,210094)
Author(s):
XU Sen ZHANG Xingming PAN Feng ZHANG Jianxin
①School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094) ②National Quality Supervision Testing Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
爆炸力学水下爆炸冲击波超压气泡脉动
Keywords:
explosion mechanics underwater explosion shock overpressure bubble pulsation
分类号:
TJ55 O382
DOI:
10.3969/j.issn.1001-8352.2013.01.005
文献标志码:
A
摘要:
为了研究不同能量测试方法对工业炸药能量测试结果的影响,分别采用爆热、铅壔法和水下爆炸法测量了几种典型工业炸药样品的能量。结果表明:3种测试方法都能用于评价炸药的能量水平,其中爆热和水下爆炸法能直接得到样品的能量值,水下爆炸法适用于大药量样品的能量测试要求。水下爆炸试验结果表明,参比TNT药柱的总能量为3.410mJ/kg,粉状乳化炸药的总能量为3.758mJ/kg,1号和2号岩石乳化炸药的总能量分别为3.411mJ/kg和3.182mJ/kg,二级和三级煤矿许用乳化炸药的总能量分别为3.021mJ/kg和2.947mJ/kg,这5种工业炸药的TNT当量分别为1.10、1.00、0.933、0.886和0.864。水下爆炸测得的5种工业炸药能量为爆热测量值的76.1%~78.8%。
Abstract:
The energies of five typical industrial explosives are measured by blasting heat device, lead blocks and underwater explosion test systems to study the differences brought by using different testing methods. The results show that all the three testing methods can be used to effectively evaluate the energy level of industrial explosives, energy values can be directly generated by detonation heat or underwater methods, and the underwater explosion method can meet with the requirement for a large load test. Underwater explosion test results show that the energy of reference TNT charge is 3.410mJ/kg, while the energies of powdery emulsion explosive, 1# and 2# rock explosives, and level 2 and level 3 permissible explosives are 3.758 mJ/kg, 3.411mJ/kg, 3.182mJ/kg, 3.021mJ/kg and 2.947mJ/kg, respectively. The TNT equivalences of these five samples are 1.10, 1.00, 0.933, 0.886 and 0.864. The energy values of the samples measured by underwater explosion are 76.1%-78.8% of these by detonation heat.

参考文献/References:

[1]牟金磊,朱锡,李海涛,等. 炸药水下爆炸能量输出特性试验研究[J]. 高压物理学报,2010,24(2):88-92.
Mu Jinlei, Zhu Xi, Li Haitao, et al. Experimental research on underwater explosion energy output of explosive[J]. Chinese Journal of High Pressure Physics, 2010,24(2):88-92. 
[2]李澎. 非理想炸药水下爆炸能量输出结构研究[D]. 北京:北京理工大学,2006.
 Li Peng. Study on energy output characteristic of nonideal explosives[D]. Beijing:Beijing Institute of Technology, 2006.
[3]史锐,徐更光,刘德润,等. 炸药爆炸能量的水中测试与分析[J]. 火炸药学报,2008,31(4):1-5.
 Shi Rui,Xu Gengguang,LIU Derun, et al. Underwater test and analysis for explosion energy of explosives[J]. Chinese Journal of Explosives and Propellants,2008,31(4):1-5.
[4]李健,荣吉利,项大林. 装药量及水深对水下爆炸气泡动态特性的影响[J].爆炸与冲击,2010,30(4):342-348.
 Li Jian, Rong Jili, Xiang Dalin. Effects of charge mass and water depth on dynamic behaviors of an underwater explosion bubble[J]. Explosion and Shock Waves, 2010,30(4):342-348.
[5]王建灵,赵东奎,郭炜,等. 水下爆炸能量测试中炸药入水深度的确定[J]. 火炸药学报,2002,25(2):30-31,44.
Wang Jianling,Zhao Dongkui,Guo Wei, et al. Determination of the reasonable depth of explosives in water to measure underwater explosive energy[J]. Chinese Journal of Explosives and Propellants, 2002,25(2):30-31,44.
[6]苏华,陈网桦,吴涛,等. 炸药水下爆炸冲击波参数的修正[J]. 火炸药学报,2004,27(3):46-48,52.
 Su Hua,Chen Wanghua,Wu Tao, et al. Amendment of shock wave parameters of underwater explosion[J]. Chinese Journal of Explosives and Propellants, 2004,27(3):46-48,52.
[7]饶国宁,陈网桦,胡毅亭,等. 不同炸药水下能量输出特性的试验研究[J]. 爆破器材,2007,36(1):9-11.
Rao Guoning, Chen Wanghua , Hu Yiting, et al. Experimental study on underwater energy output characteristics of different explosives[J]. Explosive Materials, 2007,36(1):9-11.
[8]Cole R H. Underwater explosions[M].US: Peinceton University Press, 1948.
[9]李澎,徐更光. 水下爆炸冲击波传播的近似计算[J]. 火炸药学报,2006,29(4):21-24.
 Li Peng, Xu Gengguang. Approximate Calculation of Underwater Explosion Shock Wave Propagation[J]. Chinese Journal of Explosives and Propellants, 2006,29(4):21-24. 
[10]孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京:兵器工业出版社,1995.
Sun Yebin, Hui Junming, Cao Xinmao. Military mixed explosive[M]. Beijing: Weapon Industry Press, 1995.

相似文献/References:

[1]李瑛,柏存增.不同敏化条件下乳化炸药减敏的实验研究[J].爆破器材,2011,40(01):19.
 LI Ying,BO Cunzeng.Experimental Research on Reducing Sensitivity of Emulsion Explosive in Different Sensitization Methods[J].EXPLOSIVE MATERIALS,2011,40(01):19.
[2]安二峰,杨军,陈鹏万.高锰钢整铸辙叉爆炸硬化实践与研究[J].爆破器材,2009,38(02):25.
 AN Erfeng,YANG Jun,CHEN Pengwan.Study on Explosive Hardening of Hadfield Steel Rail Frogs[J].EXPLOSIVE MATERIALS,2009,38(01):25.
[3]臧立伟,尹建平,王志军.轴向预制破片战斗部的设计研究[J].爆破器材,2013,42(02):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
 ZANG liwei,YIN Jianping,WANG Zhijun.Optimizing Design of Axial Prefabricated Fragments[J].EXPLOSIVE MATERIALS,2013,42(01):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
[4]姚志华,李德战,付庆海,等.偏心亚半球成型装药结构的数值模拟[J].爆破器材,2013,42(02):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
 YAO Zhihua,LI Dezhan,FU Qinghai,et al.Numerical Simulation of Shape Charge with an Eccentric Subhemisphere Liner[J].EXPLOSIVE MATERIALS,2013,42(01):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
[5]封雪松,徐洪涛,田轩,等.含储氢合金炸药的能量研究[J].爆破器材,2013,42(05):13.[doi:10.3969/j.issn.1001-8352.2013.05.003]
 FENG Xuesong,XU Hongtao,TIAN Xuan,et al.Energy Research of Explosive Containing Hydrogen Storage Alloy[J].EXPLOSIVE MATERIALS,2013,42(01):13.[doi:10.3969/j.issn.1001-8352.2013.05.003]
[6]黄兴中①②,王志军①.水下爆炸气泡脉动的数值研究[J].爆破器材,2013,42(06):19.[doi:10.3969/j.issn.1001-8352.2013.06.004]
 HUANG Xingzhong,WANG Zhijun.Numerical Study of Underwater Explosion Bubble Pulse[J].EXPLOSIVE MATERIALS,2013,42(01):19.[doi:10.3969/j.issn.1001-8352.2013.06.004]
[7]杨亚东,李向东,王晓鸣.爆炸冲击波空中传播特征参量的优化拟合[J].爆破器材,2014,43(01):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
 YANG Yadong,LI Xiangdong,WANG Xiaoming.Optimum Fitting for Characteristic Parameters of Blast Shockwaves Traveling in Air[J].EXPLOSIVE MATERIALS,2014,43(01):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
[8]金朋刚,郭炜,任松涛,等.TNT密闭环境中能量释放特性研究[J].爆破器材,2014,43(02):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
 JIN Penggang,GUO Wei,REN Songtao,et al.Research on TNT Energy Release Characteristics in Enclosed Condition[J].EXPLOSIVE MATERIALS,2014,43(01):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
[9]冯海云,胡宏伟,赵向军,等.一种评估炸药作功能力的新测试方法[J].爆破器材,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
 FENG Haiyun,HU Hongwei,ZHAO Xiangjun,et al.A New Test Method to Assess the Acting Ability of Explosive[J].EXPLOSIVE MATERIALS,2014,43(01):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
[10]郑思友,翟廷海,夏斌.工业雷管抗弯性能试验装置与方法设计[J].爆破器材,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
 ZHENG Siyou,ZHAI Tinghai,XIA Bin.Testing System and Method Design of the Bending Resistance of Industrial Detonator[J].EXPLOSIVE MATERIALS,2014,43(01):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]

备注/Memo

备注/Memo:
收稿日期:2012-10-29
作者简介:徐森(1981~),男,博士。研究方向:爆炸品性能测试分析。
更新日期/Last Update: 2013-02-28