[1]张学瑞,周涛.空爆条件下硼基燃料对Al/PTFE复合装药能量输出特性的影响[J].爆破器材,2024,53(02):7-12,21.[doi:10.3969/j.issn.1001-8352.2024.02.002]
 ZHANG Xuerui,ZHOU Tao.Influence of Boron-Dased Fuel on the Energy Output Characteristics of Al/PTFE Composite Charge under Air Explosion Condition[J].EXPLOSIVE MATERIALS,2024,53(02):7-12,21.[doi:10.3969/j.issn.1001-8352.2024.02.002]
点击复制

空爆条件下硼基燃料对Al/PTFE复合装药能量输出特性的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年02
页码:
7-12,21
栏目:
基础理论
出版日期:
2024-04-03

文章信息/Info

Title:
Influence of Boron-Dased Fuel on the Energy Output Characteristics of Al/PTFE Composite Charge under Air Explosion Condition
文章编号:
5887
作者:
张学瑞周涛
西安近代化学研究所(陕西西安,710065)
Author(s):
ZHANG Xuerui ZHOU Tao
Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
复合装药硼基燃料Al/PTFE冲击波超压
Keywords:
composite charge boron-based fuel Al/PTFE overpressure of shock wave
分类号:
TQ560.7
DOI:
10.3969/j.issn.1001-8352.2024.02.002
文献标志码:
A
摘要:
为研究空爆条件下硼基燃料对铝/聚四氟乙烯(Al/PTFE)活性材料与温压炸药组成的复合装药的能量输出特性的影响规律,设计并制备了质量相同、组分不同的3种复合装药试样,进行了自由场静爆试验,获取了不同爆心距处的冲击波超压,通过高速摄像仪记录了爆炸火球的演变过程。试验结果表明, Al/PTFE活性材料能够提高复合装药的冲击波超压,发生剧烈的后燃烧反应。硼基燃料分解过程具有2.0 ms左右的延迟,反应初期能量贡献较低,使得复合装药冲击波峰值超压降低;但是,后燃烧反应能够促进火球体积的进一步膨胀,降低冲击波超压的下降速率,提高冲击波冲量。适当配比的Al/PTFE和硼基燃料能够使复合装药冲击波峰值超压和冲量均获得增强。在Al/PTFE中加入硼基燃料,发生了爆燃以上反应,冲击波超压出现了明显的二次峰值,约为0.478 MPa。
Abstract:
In order to study the influence of boron-based fuel on the energy output characteristics of composite charges composed of Al/PTFE active materials and thermobaric explosives under air explosion conditions, three kinds of composite charge samples with the same mass but different components were designed and prepared. The free-field static explosion test was carried out, and the shock wave overpressure at different explosion center distance was obtained. The evolution process of explosion fireball was recorded by high-speed photography. The experimental results show that Al/PTFE active materials can improve the shock wave overpressure of composite charge and cause severe post-combustion reaction. The decomposition process of boron-based fuel has a delay of about 2.0 ms. The energy contribution at the initial stage of the reaction is low, which reduces the peak overpressure of the shock wave of composite charge. But the subsequent combustion reaction promotes the further expansion of fireball volume, reduces the rate of shock wave overpressure decline, and increases the shock wave impulse. Al/PTFE and boron-based fuel with proper proportion can enhance the peak overpressure and impulse of shock waves of the composite charge. When boron-based fuel is added to Al/PTFE, the reaction above deflagration occurs, and the overpressure of shock wave appears obvious secondary peak, which is about 0.478 MPa.

参考文献/References:

[1]徐松林, 阳世清, 徐文涛, 等. PTFE/Al反应材料的力学性能研究[J]. 高压物理学报, 2009, 23(5): 384-388.
XU S L, YANG S Q, XU W T, et al. Research on the mechanical performance of PTFE/Al reactive materials[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384-388.
[2]张先锋, 赵晓宁. 多功能含能结构材料研究进展[J]. 含能材料, 2009, 17(6): 731-739.
ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731-739.
[3]LOSADA M, CHAUDHURI S. Theoretical study of elementary steps in the reactions between aluminum and teflon fragments under combustive environments [J]. The Journal of Physical Chemitry A, 2009, 113(20): 5933-5941.
[4]郑雄伟, 袁宝慧, 陈进, 等. Al-PTFE活性材料的冲击压力对冲击释能规律影响研究[J]. 兵器材料科学与工程, 2016, 39(3): 110-113.
ZHENG X W, YUAN B H, CHEN J, et al. Effect of shock pressure on energy releasing characteristic of Al-PTFE reactive materials [J]. Ordnance Material Science and Engineering, 2016, 39(3): 110-113.
[5]陶俊, 王晓峰, 韩仲熙, 等. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
TAO J, WANG X F, HAN Z X, et al. Preparation and microstructure of aluminum powder/poltetrafluoroethylene mechanical activated composites [J]. Materials Reports, 2018, 32(6): 894-898.
[6]葛超, 乌布力艾散·买买提图尔荪, 任禹名, 等. PTFE/Al复合材料的冲击反应阈值试验研究[J].中国科技论文, 2016, 11(22): 2597-2600.
GE C, MAIMAITITUERSUN W, REN Y M, et al. Impact initiation threshold study of PTFE/Al composite [J]. China Sciencepaper, 2016, 11(22): 2597-2600.
[7]任耶平, 刘睿, 陈鹏万, 等. Al/PTFE活性材料冲击载荷作用下响应特性研究[J]. 爆炸与冲击, 2022, 42(6): 063103.
REN Y P, LIU R, CHEN P W, et al. A study of the response characteristics of Al/PTFE reactive materials under shock loading[J]. Explosion and Shock Waves, 2022, 42(6): 063103.
[8]DOLGOBORODOV A Y, MAKHOV M N, KOLBANEV I V, et al. Detonation in an aluminum-Teflon mixture [J]. JETP Letters, 2005, 81(7): 311-314.
[9]彭翠枝, 范夕萍, 任晓雪, 等. 国外火炸药技术发展新动向分析[J]. 火炸药学报, 2013, 6(3): 1-5.
PENG C Z, FAN X P, REN X X, et al. Analysis on recent trends of foreign propellants and explosives technology development [J]. Chinese Journal of Explosives & Propellants, 2013, 6(3): 1-5.
[10]李凌峰, 王辉, 韩秀凤, 等.Al/PTFE与炸药组合装药的爆炸释能特性[J]. 火炸药学报, 2023, 46(1): 69-75.
LI L F, WANG H, HAN X F, et al. Explosive energy release characteristics of composite charges with Al/PTFE and explosives[J]. Chinese Journal of Explosives & Propellants, 2023, 46(1): 69-75.
[11]陶俊, 王晓峰. 金属氟聚物机械活化含能材料的研究进展[J]. 火炸药学报, 2017, 40(5): 8-14.
TAO J, WANG X F. Research progress in metal-fluoropolymer mechanical activation energetic composites [J]. Chinese Journal of Explosives & Propellants, 2017, 40(5): 8-14.
[12]陈亚红, 白春华, 刘意, 等. 中心药抛撒金属颗粒群的初速计算与实验研究[J]. 兵工学报, 2012, 33(5): 556-559.
CHEN Y H, BAI C H, LIU Y, et al. Experimental study and initial velocity calculation of particles dispersed by center explosive [J]. Acta Armamentarii, 2012, 33(5): 556-559.

备注/Memo

备注/Memo:
收稿日期:2023-10-17
基金项目:GFKJ卓越青年科学基金(J-JK-ZQ-2101)
第一作者:张学瑞(1998—),男,硕士研究生,主要从事爆破战斗部装药技术研究。E-mail:zhangxuerui1998@163.com
通信作者:周涛(1979—),男,高级工程师,主要从事战斗部设计研究。E-mail:sflantian@163.com
更新日期/Last Update: 2024-04-02