[1]王杰①②,张云鹏①②,葛晓东①②,等.液态CO2相变破岩参数及数值模拟研究[J].爆破器材,2022,51(04):16-22.[doi:10.3969/j.issn.1001-8352.2022.04.003]
 WANG Jie,ZHANG Yunpeng,GE Xiaodong,et al.Study on Rock Breaking Parameters and Numerical Simulation of Phase Transition of Liquid CO2 [J].EXPLOSIVE MATERIALS,2022,51(04):16-22.[doi:10.3969/j.issn.1001-8352.2022.04.003]
点击复制

液态CO2相变破岩参数及数值模拟研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年04
页码:
16-22
栏目:
基础理论
出版日期:
2022-07-08

文章信息/Info

Title:
Study on Rock Breaking Parameters and Numerical Simulation of Phase Transition of Liquid CO2
文章编号:
5683
作者:
王杰①②张云鹏①②葛晓东①②周敏①②
①华北理工大学矿业工程学院(河北唐山,063000)
②华北理工大学河北省矿业开发与安全技术重点实验室(河北唐山,063000)
Author(s):
WANG Jie①② ZHANG Yunpeng①② GE Xiaodong①② ZHOU Min①②
①College of Mining Engineering, North China University of Science and Technology (Hebei Tangshan, 063000)
②Key Laboratory of Mine Development and Safety Technology of Hebei Province, North China University of Science and Technology (Hebei Tangshan, 063000)
关键词:
CO2致裂TNT当量爆炸压力数值模拟
Keywords:
CO2 induced cracking TNT equivalent explosion pressure numerical simulation
分类号:
TD235
DOI:
10.3969/j.issn.1001-8352.2022.04.003
文献标志码:
A
摘要:
为更好地了解液态CO2相变破岩技术,对液态CO2相变的相关参数进行了研究。并通过调节装药不耦合系数,对传统数值模拟方法进行优化,确定了用于施工现场的布孔方式。结果表明:所采用的CO2相变致裂器的TNT当量为0.29 kg,乳化炸药当量为0.41 kg;其作用于孔壁上的爆轰压力为1 200 MPa,仅为乳化炸药爆轰压力的7.8%;爆容为509 L/kg,约为乳化炸药爆容的50%;破岩范围半径约为1.75 m。提出了用于工程现场的致裂方案,取得了良好的破岩效果。
Abstract:
In order to better understand the liquid CO2 phase change fracturing technology, relevant parameters of liquid CO2 phase change were studied. By adjusting the charge uncoupling factor, the traditional numerical simulation method was optimized to determine the hole placement method for the construction site. Results show that the CO2 phase change fracture device used in this test has a TNT explosive equivalent of 0.29 kg and an emulsion explosive equivalent of 0.41 kg. Blast pressure on the hole wall is 1 200 MPa, which is only 7.8% of the blast pressure of emulsion explosives. Blast capacity is 509 L/kg, which is about 50% of the blast capacity of emulsion explosives. Radius of rock breaking range is about 1.75 m. A fracturing scheme was proposed for the project site, which achieved good rock breaking results.

参考文献/References:

[1]王燕,孙伟博,张丁丁. 二氧化碳相变致裂软岩实验研究[J]. 爆破器材,2020,49(2): 46-51.
WANG Y, SUN W B, ZHANG D D. Experimental study on fracture of soft rock fracturing by phase change of carbon dioxide[J]. Explosive Materials, 2020, 49(2): 46-51.
[2]题正义,陈波.亭南煤矿CO2致裂巷道卸压技术的应用研究[J].金属矿山,2019(4): 48-52.
TI Z Y,CHEN B. Application of pressure relief technology of liquid CO2 fracturing roadway in Tingnan Coal Mine[J].Metal Mine, 2019(4): 48-52.
[3]章文义.对二氧化碳气体爆破的管理对策研究[J].工程爆破,2018,24(3): 77-79,90.
ZHANG W Y. Reseach on the management countermeasures of carbon dioxide gas blasting [J]. Engineering Blasting, 2018,24(3): 77-79,90.
[4]夏军,陶良云,李必红,等.二氧化碳液-气相变膨胀破岩技术及应用[J].工程爆破, 2018, 24(3): 50-54.
XIA J,TAO L Y,LI B H, et al.Technology and application of the rock breaking by CO2 liquid-gas phase transition and expansion[J].Engineering Blasting, 2018, 24(3): 50-54.
[5]周科平,柯波,李杰林,等.液态CO2爆破系统压力动态响应及爆炸能量分析[J].爆破,2017,34(3): 7-13.
ZHOU K P, KE B, LI J L, et al. Pressure dynamic response and explosion energy of liquid carbon dioxide blasting system[J]. Blasting, 2017, 34(3): 7-13.
[6]董庆祥,王兆丰,韩亚北,等.液态CO2相变致裂的TNT当量研究[J].中国安全科学学报, 2014, 24(11): 84-88.
DONG Q X,WANG Z F,HAN Y B, et al. Research on TNT equivalent of liquid CO2 phase-transition fracturing[J].China Safety Science Journal, 2014, 24(11): 84-88.
[7]刘光辉,王海亮,吴钦鑫.竖井爆破振动及CO2致裂 振动信号的小波包分析[J].煤矿安 全,2018,49(9): 233-237.
LIU G H, WANG H L, WU Q X. Shaft blasting vibration and CO2 fracturing vibration signals by wavelet packet analysis[J]. Safety in Coal Mines, 2018, 49 (9): 233-237.
[8]CHEN H D,WANG Z F, CHEN X E, et al. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide[J].Journal of CO2 Utilization, 2017,19: 112-119.
[9]LU T K,WANG Z F,YANG H M,et al. Improvement of coal seam gas drainage by under-panel cross-strata stimulation using highly pressurized gas [J]. International Journal of Rock Mechanics and Mining Sciences,2015,77: 300-312.
[10]梅比,高星,方莹,等.二氧化碳膨胀爆破新型致裂管与安全技术研究[J].爆破,2021,38(2): 153-159.
MEI B, GAO X, FANG Y, et al. Study on a new type of fracturing tube and safety technology of carbon dioxide expansion blasting[J]. Blasting, 2021, 38(2): 153-159.
[11]夏祥,李海波,王晓炜,等.核电工程中的CO2致裂与炸药爆破地表振动传播规律试验研究[J].岩石力学与工程学报, 2021,40(7): 1350-1356.
XIA X, LI H B, WANG X W, et al. Comparison analysis of ground vibrations induced by CO2 gas fracturing and explosive blasting[J]. Chinese Journal of Rock Mechanics and Engineering, 2021,40(7): 1350-1356.
[12]李文炜,狄刚,王瑞欣.船运液态二氧化碳储罐爆炸事故的原因分析[J].安全与环境工程,2010,17(1): 95-98.
LI W W, DI G, WANG R X. Analysis of a liquid CO2 tank explosion on a ship[J].Safety and Environmental Engineering,2010,17(1): 95-98.
[13]李必红,夏军,陈丁丁. CO2液-气相变膨胀破岩机理及其安全效应测试研究[J].采矿技术,2017,17(1): 61-63,68.
LI B H, XIA J, CHEN D D. Research on rock breaking mechanism and safety effect of CO2 liquid gas phase change expansion[J]. Mining Technology, 2017, 17 (1): 61-63,68.
[14]王莉,陈杰,李必红.复杂环境下CO2膨胀爆破工程应用[J].工程爆破,2021,27(1): 95-99.
WANG L, CHEN J, LI B H. Application of CO2 expansion blasting project in complex environment [J].Engineering Blasting,2021,27(1): 95-99.

相似文献/References:

[1]李静,王伯良,赵新颖,等.高含铝炸药爆炸过程中的能量分析[J].爆破器材,2013,42(02):10.[doi:10.3969/j.issn.1001-8352.2013.02.003]
 LI Jing,WANG Boliang,ZHAO Xinying,et al.Energy Analysis in the Explosion Process of High Aluminized Explosive[J].EXPLOSIVE MATERIALS,2013,42(04):10.[doi:10.3969/j.issn.1001-8352.2013.02.003]
[2]程辰①②,林明①,龙源②,等.基于爆炸现场破坏分析的TNT当量快速估算方法研究[J].爆破器材,2018,47(03):37.[doi:10.3969/j.issn.1001-8352.2018.03.007]
 CHENG Chen,LIN Ming,LONG Yuan,et al.Fast Estimation Method of TNT Equivalent Based on Onsite Damage Analysis[J].EXPLOSIVE MATERIALS,2018,47(04):37.[doi:10.3969/j.issn.1001-8352.2018.03.007]

备注/Memo

备注/Memo:
收稿日期:2021-11-27
基金项目:河北省自然科学基金(E2016209388)
第一作者:王杰(1995-),男,硕士研究生,主要从事爆破领域的研究。E-mail:2902299640@qq.com
通信作者:张云鹏(1962-),男,教授,博导,主要从事矿业工程、安全工程、爆炸领域的研究。E-mail:276158733@qq.com
更新日期/Last Update: 2022-07-05