[1]熊奥①,阮建①,丁亚军①②,等.SC-CO2及工艺条件对高固含量发射药CA/CaCO3体系挤出停留时间的影响[J].爆破器材,2020,49(05):29-35,41.[doi:10.3969/j.issn.1001-8352.2020.05.006]
 XIONG Ao,RUAN Jian,DING Yajun,et al.Effect of SC-CO2 and Process Conditions on Residence Time of High Solid Content Propellant Substitute in Extrusion[J].EXPLOSIVE MATERIALS,2020,49(05):29-35,41.[doi:10.3969/j.issn.1001-8352.2020.05.006]
点击复制

SC-CO2及工艺条件对高固含量发射药CA/CaCO3体系挤出停留时间的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年05
页码:
29-35,41
栏目:
爆炸材料
出版日期:
2020-10-05

文章信息/Info

Title:
Effect of SC-CO2 and Process Conditions on Residence Time of High Solid Content Propellant Substitute in Extrusion
文章编号:
5434
作者:
熊奥阮建丁亚军①②应三九
①南京理工大学化工学院(江苏南京,210094)
②南京理工大学特种能源材料教育部重点实验室(江苏南京,210094)
Author(s):
XIONG Ao RUAN Jian DING Yajun①② YING Sanjiu
① School of Chemical Engineering,Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Key Laboratory of Special Energy Materials in Ministry of Education, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
高固含量发射药超临界二氧化碳停留时间
Keywords:
high solid content propellant supercritical carbon dioxide residence time
分类号:
TQ562
DOI:
10.3969/j.issn.1001-8352.2020.05.006
文献标志码:
A
摘要:
为了研究挤出过程中超临界二氧化碳(SC-CO2)对高固含量发射药停留时间分布的影响,采用示踪粒子轨迹跟踪技术研究了醋酸纤维素(CA)/碳酸钙(CaCO3)/SC-CO2代料停留时间的影响因素,结合反应器流动模型确定了CA/CaCO3/SC-CO2在机筒中的流动情况。数值模拟结果显示,注入体积流量为0.1 mL/min的SC-CO2后,平均停留时间缩短了35%,Pe减小了196.4;螺杆转速由6 r/min增加到14 r/min时,平均停留时间缩短了54.5%,Pe减小了210.8;当机筒温度从40 ℃升高至60 ℃,平均停留时间减少了19%,Pe减小了75.0。反应器流动模型拟合结果显示,螺杆转速由6 r/min增加到14 r/min时,CA/CaCO3/SC-CO2的体积分数从0.65降低到0.62。由此可知,SC-CO2的加入、螺杆转速的增加以及机筒温度的升高都显著缩短了物料的停留时间,并促进了轴向混合,CA/CaCO3/SC-CO2在螺杆内的主要流型为活塞流。
Abstract:
In order to study the effect of supercritical carbon dioxide (SC-CO2) on the residence time distribution of high solid propellant in extrusion process, numerical simulation of CA/CaCO3/SC-CO2 substitutes was performed to analyze the influencing factors of residence time by particle tracing method. Combined with reactor flow pattern, the main flow patterns of CA/CaCO3/SC-CO2 in the barrel were determined. The results show that after injection of SC-CO2 with a volume flow of 0.1 mL/min, the mean residence time reduces by 35%, and the Pe?number reduces by 196.4. When the screw speed increases from 6 r/min to 14 r/min, the mean residence time reduces by 54.5%, and the Pe?number decreases 210.8. The mean residence time reduces by 19% and the Pe?number reduces by 75.0 when the cylinder temperature increases from 40℃ to 60℃. The fitting results show that the volume fraction of CA/CaCO3/SC-CO2 decreases from 0.65 to 0.62 as the screw speed increases from 6 r/min to 14 r/min. The residence time of the material is significantly shortened, the axial mixing is enhanced by the addition of SC-CO2, and the acceleration of screw speed and the increase in barrel temperature. Plug flow is the dominant flow pattern of CA/CaCO3/SC-CO2 in the screw.

参考文献/References:

[1]SANGHAVI R R, KAMALE P J, SHAIKH M A R, et al. HMX based enhanced energy LOVA gun propellant[J]. Journal of Hazardous Materials, 2007, 143(1/2): 532-534.

[2]PANG W Q, DE LUCA L T, XU H X, et al. Effects of CL-20 on the properties of glycidyl azide polymer (GAP) solid rocket propellant[J]. International Journal of Energetic Materials and Chemical Propulsion, 2016, 15(1): 49-64.
[3]ZHOU K, HE Z Q, YIN S P, et al. Numerical simulation for exploring the effect of viscosity on single-screw extrusion process of propellant[J]. Procedia Engineering, 2014, 84: 933-939.
[4]DOMBE G, MAURYA M, BHONGALE C. Application of twin screw extrusion for continuous processing of energetic materials[J]. Central European Journal of Energetic Materials, 2015, 12(3): 507-522.
[5]徐俊杰, 张先明, 陈文兴,等. 微型锥形双螺杆挤出机混合性能的数值模拟[J]. 高分子材料科学与工程, 2015,31(3):128-132.
XU J J, ZHANG X M, CHEN W X, et al. Numerical simulation of mixing performance in the miniature conical twin screw extruder[J]. Polymer Materials Science and Engineering, 2015,31(3):128-132.
[6]YANG K X, XIN C L, YU D Q, et al. Numerical simulation and experimental study of pressure and residence time distribution of triple-screw extruder[J]. Polymer Engineering & Science, 2015,55(1):156-162.
[7]PONOMAREV D, RODIER E, SAUCEAU M, et al. Modelling non-homogeneous flow and residence time distribution in a single-screw extruder by means of Markov chains[J]. Journal of Mathematical Chemistry, 2012,50(8):2141-2154.
[8] REITZ E, PODHAISKY H, ELY D, et al. Residence time modeling of hot melt extrusion processes[J]. European Journal of Pharmaceutics & Biopharmaceutics, 2013,85(3):1200-1205.
[9] DING Y J,WEI R J,YING S J.In-line rheological behaviors of gun propellant substitute assisted with supercritical CO2 in extrusion processing[J]. Propellants,Explosives,Pyrotechnics,2017,42(3):247252.
[10]CURIA S, DE FOCATIIS D S A, HOWDLE S M. High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly(ε-caprolactone)[J]. Polymer, 2015, 69: 17-24.
[11] FRANKEN H H, KNOETZE J H, SCHWARZ C E. High-pressure binary phase equilibria, density and dynamic viscosity of 100 & 200 cSt polydimethylsiloxane (PDMS) with supercritical CO2[J]. The Journal of Supercritical Fluids, 2018, 139: 1-7.
[12]KLOZI-SKI A. The application of an extrusion modular slit head of a special construction in the inline extensional viscosity measurements of polymers[J]. Polymer Testing, 2019, 73: 186-192.
[13]YEH A I, JAW Y M. Predicting residence time distributions in a single screw extruder from operating conditions[J]. Journal of Food Engineering, 1999, 39(1): 81-89.
[14]BOCHMANN E S, STEFFENS K E, GRYCZKE A, et al. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 124: 34-42.
[15]AVELINO H M N T, FARELEIRA J M N A, GOURGOUILLON D, et al. Viscosity of poly(ethyleneglycol) 200 [PEG 200] saturated with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2017, 128: 300-307.

备注/Memo

备注/Memo:
收稿日期:2019-12-05
基金项目:特种能源材料教育部重点实验室(南京理工大学)开放基金项目资助(2019SEM05)
第一作者:熊奥(1994-),男,硕士研究生,主要从事含能材料研究。E-mail:18892681625@163.com
通信作者:丁亚军(1990-),男,讲师,主要从事含能材料研究。E-mail:dyj@njust.edu.cn
更新日期/Last Update: 2020-10-05