[1]薄晨琦①,林建②,孙华②,等.某增材制造用铝镁合金粉遇湿热行为的研究[J].爆破器材,2025,54(02):44-50.[doi:10.3969/j.issn.1001-8352.2025.02.006]
 BO Chenqi,LIN Jian,SUN Hua,et al.Thermal Behavior of Aluminum Magnesium Alloy Powder Used for Manufacturing a Certain Additive When Exposed to Humid Environments[J].EXPLOSIVE MATERIALS,2025,54(02):44-50.[doi:10.3969/j.issn.1001-8352.2025.02.006]
点击复制

某增材制造用铝镁合金粉遇湿热行为的研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年02
页码:
44-50
栏目:
爆炸材料
出版日期:
2025-04-07

文章信息/Info

Title:
Thermal Behavior of Aluminum Magnesium Alloy Powder Used for Manufacturing a Certain Additive When Exposed to Humid Environments
文章编号:
5990
作者:
薄晨琦林建孙华肖秋平商照聪
①上海化工研究院有限公司(上海,200062)
②上海化工院检测有限公司(上海,200062)
Author(s):
BO Chenqi LIN Jian SUN Hua XIAO Qiuping SHANG Zhaocong
① Shanghai Research Institute of Chemical Industry Co.,Ltd.(Shanghai, 200062)
② Shanghai Research Institute of Chemical Industry Testing Co., Ltd. (Shanghai, 200062)
关键词:
铝/水反应严重度热失控反应热动力学
Keywords:
aluminum/water reaction severity thermal runaway reaction thermodynamic
分类号:
TQ560.7
DOI:
10.3969/j.issn.1001-8352.2025.02.006
文献标志码:
A
摘要:
用于制造增材的铝镁合金粉遇湿易发生爆炸事故。为探究含水铝镁合金粉发生热失控的危险性,对铝镁混合体系的起始放热温度、比放热量以及在绝热条件下的放热行为与产氢特性开展实验。结果表明:镁质量分数为9%的铝镁混合体系反应存在2个放热峰;放热峰I的起始温度随含水率的增大而提升至100 ℃;含水率大于17%时,放热峰II的最小放热量超过800 J/g,失控反应的严重度等级为灾难性的;由于镁元素的添加,混合体系热失控严重度最大提升了200%;绝热条件下,66%含水率的混合体系氢气最大比产气量达到8.71 mol/kg,30%含水率的混合体系发生失控反应的严重度最高,最大比放热量为1 878.69 J/g,修正后绝热升温为930.10 K。揭示了铝镁合金粉遇湿引发热失控的机理,为铝/水反应热失控理论模型的建立提供了有力依据。
Abstract:
Aluminum magnesium alloy powder used for additive manufacturing may cause explosion accidents in humid environments. In order to investigate the danger of thermal runaway of water containing aluminum magnesium alloy powder, experiments were carried out on the onset temperature of exothermic peak, specific exothermic capacity, exothermic behavior and hydrogen production characteristics under adiabatic conditions of the mixed system. The results show that there are two exothermic peaks in the reaction of the mixed system of aluminum magnesium alloy powder with 9% magnesium content. The onset temperature of exothermic peak Ⅰ increases to nearly 100 ℃ with the increase of water content. When the mass fraction of water is greater than 17%, the minimum heat release of exothermic peak II exceeds 800 J/g, and the severity level of the uncontrolled reaction is catastrophic. Due to the addition of magnesium, the severity of thermal runaway in the mixed system increased by up to 200%. Under adiabatic conditions, the specific hydrogen production of the mixed system with a water mass fraction of 66% reaches the maximum value of 8.71 mol/kg, while the mixed system with a water mass fraction of 30% has the highest severity of runaway reactions, with a maximum specific heat release of 1 878.69 J/g and a revised adiabatic temperature rise of 930.10 K. It revealed the mechanism of thermal runaway caused by moisture exposure of aluminum magnesium alloy powder, providing a strong basis for the establishment of a theoretical model of thermal runaway in aluminum/water reactions.

参考文献/References:

[1]卢国菊, 于丽雅, 高彩军. 铝粉及铝镁混合粉的爆炸特性 [J]. 粉末冶金工业, 2022, 32(6): 82-85.
LU G J, YU L Y, GAO C J. Study on the explosion characteristics of aluminium powder and aluminium magnesium mixed powder [J]. Powder Metallurgy Industry, 2022, 32(6): 82-85.
[2]LI G, YANG H X, YUAN C M, et al. A catastrophic aluminiumalloy dust explosion in China [J]. Journal of Loss Prevention in the Process Industries, 2016, 39: 121-130.
[3]多英全, 刘垚楠, 胡馨升. 2009~2013年我国粉尘爆炸事故统计分析研究 [J]. 中国安全生产科学技术, 2015, 11(2): 186-190.
DUO Y Q, LIU Y N, HU X S. Statistical analysis on dust explosion accidents occurring in China during 2009—2013 [J]. Journal of Safety Science and Technology, 2015, 11(2): 186-190.
[4]CAI J Z, LIANG Y T, JIA R T, et al. Investigating the explosion hazard of hydrogen produced by activated aluminum in a modified Hartmann tube [J]. International Journal of Hydrogen Energy, 2022, 47(35): 15933-15941.
[5]江苏省昆山“3·31”事故省市联合调查组. 昆山汉鼎精密金属有限公司“3·31”较大爆燃事故调查报告 [R]. 昆山: 苏州市应急管理局, 2019.
[6]上海市人民政府事故调查组. 上海临港汉邦科技公司“9·14”中效净化箱较大爆炸事故调查报告 [R]. 上海: 上海市应急管理局, 2024.
[7]ZHANG Y Y, XU K L, LIU B, et al. Suppression method of industrial Al alloy powder explosion in dry and humid environment: a low-cost intrinsic safety technology [J]. Advanced Powder Technology, 2023, 34(9): 104131.
[8]STOESSEL F. Thermal safety of chemical processes: risk assessment and process design [M]. John Wiley & Sons, 2021.
[9]DENG Z Y, FERREIRA J M F, SAKKA Y. Hydrogen-generation materials for portable applications [J]. Journal of the American Ceramic Society, 2008, 91(12): 3825-3834.
[10]肖秋平. 镁水混合体系热失控致灾演化过程的实验和理论研究[D]. 南京: 南京理工大学, 2023.
[11]KOZIN L F, VOLKOV S V, GONCHARENKO S G, et al. Kinetics and mechanism of interaction of aluminum and magnesium of Al-Mg-Bi ternary system with water [J]. Protection of Metals and Physical Chemistry of Surfaces, 2011, 47(2): 171-180.
[12]RUBASINGHEGE G, GRASSIAN V H. Surfacecatalyzed chlorine and nitrogen activation: mechanisms for the heterogeneous formation of ClNO, NO, NO2, HONO, and N2O from HNO3 and HCl on aluminum oxide particle surfaces [J]. Journal of Physical Chemistry A, 2012, 116(21): 5180-5192.
[13]葛双优. 抛光铝粉热自燃机理研究[D]. 沈阳: 东北大学, 2015.
GE S Y. Study on the mechanism of auto ignition of aluminum dust form polishing process[D]. Shenyang: Northeastern University, 2015.
[14]董泽. 反应体系热失控压力泄放的实验及理论研究 [D]. 南京: 南京理工大学, 2019.
DONG Z. Experimental and theoretical research on the pressure relief of thermal runaway reaction systems [D]. Nanjing: Nanjing University of Science and Technology, 2019.

备注/Memo

备注/Memo:
收稿日期:2024-11-27
基金项目:国家重点研发计划(2023YFC3010605)
第一作者:薄晨琦(1999—),男,硕士研究生,主要从事化工安全的研究。E-mail:a18538057129@163.com
通信作者:肖秋平(1984—),男,正高级工程师,硕导,主要从事工业安全的研究。E-mail:xqp@ghs.cn
更新日期/Last Update: 2025-04-07