[1]赵立①,王小军②,尚凤琴②,等.4,4’,5,5’-四硝基-2H,2’H-3,3’联吡唑(TNBP)系列金属盐的合成、结构表征与性能研究[J].爆破器材,2025,54(02):14-20.[doi:10.3969/j.issn.1001-8352.2025.02.002]
 ZHAO Li,WANG Xiaojun,SHANG Fengqin,et al.Synthesis, Structural Characterization, and Performance Evaluation of Metal Salts of 4,4’,5,5’-Tetranitro-2H, 2’H-3, 3’-Bipyrazole (TNBP)[J].EXPLOSIVE MATERIALS,2025,54(02):14-20.[doi:10.3969/j.issn.1001-8352.2025.02.002]
点击复制

4,4’,5,5’-四硝基-2H,2’H-3,3’联吡唑(TNBP)系列金属盐的合成、结构表征与性能研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年02
页码:
14-20
栏目:
基础理论
出版日期:
2025-04-07

文章信息/Info

Title:
Synthesis, Structural Characterization, and Performance Evaluation of Metal Salts of 4,4’,5,5’-Tetranitro-2H, 2’H-3, 3’-Bipyrazole (TNBP)
文章编号:
5979
作者:
赵立 王小军尚凤琴牛俊玲陆明
①南京理工大学化学与化工学院(江苏南京,210094)
②甘肃银光化学工业集团有限公司(甘肃白银,730900)
③中北大学环境与安全工程学院(山西太原,030051)
Author(s):
ZHAO Li WANG Xiaojun SHANG Fengqin NIU Junling LU Ming
① School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Gansu Yinguang Chemical Industry Group Co.Ltd.(Gansu Binyin, 730900)
③ School of Environment and Safety Engineering, North University of China (Shanxi Taiyuan, 030051)
关键词:
TNBP金属盐热分解动力学参数爆轰性能
Keywords:
TNBP metal salt thermal decomposition kinetic parameter detonation property
DOI:
10.3969/j.issn.1001-8352.2025.02.002
文献标志码:
A
摘要:
以 4,4’,5,5’-四硝基-2H,2’H-3,3联吡唑(TNBP)为原料,与碱反应生成化合物1,并进一步以化合物1为原料,通过复分解反应合成了该化合物的金属盐化合物2~化合物6。通过红外、核磁共振碳谱和元素分析对化合物进行了结构表征。并通过 X-射线单晶衍射对化合物1的单晶结构进一步表征。利用差示扫描量热法(DSC)研究了化合物1~化合物6的热行为,化合物 1~化合物6的热分解温度在280~336 ℃之间。并通过Kissinger动力学方程求解出TNBP金属盐的热动力学参数。采用 Gaussian 09 程序和 Explo 5评估了化合物1~化合物6的爆轰性能:计算爆速在7 119~8 654 m/s之间;爆压在26.80~39.45 GPa 范围内;爆热在5 262~8 827 J/g之间。利用BAM 感度测试仪进行感度测试:化合物1~化合物6 撞击感度为5~7 J;摩擦感度为40~60 N。
Abstract:
Using 4, 4’, 5, 5’-tetranitro-2H, 2’H-3, 3’-bipyrazole (TNBP) as the starting material, compound 1 was synthesized by reacting with a base. Furthermore, compound 1 was used as the starting material to synthesize metal salt compounds 2-6 of the compound through metathesis reactions. The structures of the compounds were characterized by infrared spectroscopy, carbon spectroscopy of nuclear magnetic resonance, and elemental analysis. Further structural characterization of compound 1 was conducted using single-crystal X-ray diffraction. Thermal behavior of compounds 1-6 was studied using differential scanning calorimetry (DSC). The thermal decomposition temperature of compounds 1-6 ranges from 280 ℃ to 336 ℃. The thermodynamic parameters of TNBP metal salts were determined using Kissinger kinetic equation. The detonation properties of compounds 1-6 were evaluated using Gaussian 09 and Explo 5 programs, with calculated detonation velocities ranging from 7 119 m/s to 8 654 m/s, detonation pressures ranging from 26.8 GPa to 39.45 GPa, and detonation heats ranging from 5 262 J/g to 8 827 J/g. Sensitivity tests performed using a BAM impact sensitivity tester indicated that the impact sensitivities of compounds 1- 6 ranged from 5 J to 7 J, and their friction sensitivities ranged from 40 N to 60 N.

参考文献/References:

[1]WANG Y, SONG S, HUANG C, et al. Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host-guest inclusion strategy [J]. Journal of Materials Chemistry A, 2019, 7(33): 19248-19257.
[2]HARPER L K, SHOAF A L, BAYSE C A. Predicting trigger bonds in explosive materials through wiberg bond index analysis [J]. ChemPhysChem, 2015, 16(18): 3886-3892.
[3]LI C Y, LI H, ZONG H H, et al. Strategies for achieving balance between detonation performance and crystal stability of high-energy-density materials [J]. iScience, 2020, 23(3): 100944.
[4]田勇, 韩勇, 杨光成. 钝感高能炸药几点认识与思考 [J]. 含能材料, 2016, 24(12): 1132-1135.
TIAN Y, HAN Y, YANG G C. Some understanding and thinking of insensitive high explosive [J]. Chinese Journal of Energetic Materials, 2016, 24(12): 1132-1135.
[5]TANG W J, LIU Y W, YANG X, et al. Kinetic studies of the calcination of ammonium metavanadate by thermal methods [J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 2054-2059.
[6]潘永飞, 汪营磊, 赵宝东, 等. 硝基吡唑及其衍生物的合成、性能及应用研究进展 [J]. 含能材料, 2018, 26(9): 796-812.
PAN Y F, WANG Y L, ZHAO B D, et al. Research progress in synthesis, properties and applications of nitropyrazoles and their derivatives[J]. Chinese Journal of Energetic Materials, 2018, 26(9): 796-812.
[7]罗义芬, 肖川, 毕福强, 等. 联吡唑含能化合物合成及性能研究进展[J]. 含能材料, 2020, 28(7): 695-706.
LOU Y F, XIAO C, BI F Q, et al. Review on energetic compounds based on bipyrazoles: synthesis and property[J]. Chinese Journal of Energetic Materials, 2020, 28(7): 695-706.
[8]TANG Y X, HE C L, IMLER G H, et al. Energetic derivatives of 4,4’,5,5’-tetranitro-2H,2’H-3,3’-bipyrazole (TNBP): synthesis, characterization and promising properties [J]. Journal of Materials Chemistry A, 2018, 6(12): 5136-5142.
[9]李川. 偶联吡唑三唑类含能离子盐的合成与性能[D]. 北京: 北京理工大学, 2018.
LI C. Synthesis and properties of pyrazolate coupled triazolium-based energetic salts[D]. Beijing: Beijing Institute of Technology, 2018.
[10]DALINGER I L, SUPONITSKY K Y, SHKINEVA T K,etal. Bipyrazole bearing ten nitro groups: a novel highly dense oxidizer for forward-looking rocket propulsions[J]. Journal Materials Chemistry A. Material for Energy and Sustainability,2018,6(30):14780-14786.
[11]SHREEVE J M, KUMAR D, TANG Y X, et al. Multipurpose energetic materials by shuffling nitro groups on a 3,3’-bipyrazole moiety [J]. Chemistry:A European Journal, 2018, 24(65): 17220-17224.
[12]WURZENBERGER M H H, GRUHNE M S, LOMMEL M, et al. Taming the dragon: complexation of silver fulminate with nitrogen-rich azole ligands[J]. Inorganic Chemisrty, 2020, 59(24): 17875-17879.
[13]VARGASHERNANDEZ R A. Bayesian optimization for calibrating and selecting hybrid-density functional models [J]. The Journal of Physical Chemistry A. Molecules, Spectroscopy, Kinetics, Environment & General Theory, 2020, 124(20): 4053-4061.
[14]于志宏, 饶文军, 宋小兰, 等. 2,4,6-三硝基-3-溴苯甲醚的热分解特性及机理研究 [J]. 火工品, 2022 (6): 65-69.
YU Z H, RAO W J, SONG X L, et al. Study on thermolysis characteristics and mechanism of 2,4,6-trinitro-3-bromoanisole[J]. Initiators & Pyrotechnics, 2022 (6): 65-69.
[15]袁华, 高硕, 曹晨忠. 单取代烷烃的热容、熵和吉布斯自由能的定量估算 [J]. 湖南科技大学学报(自然科学版), 2009, 24(2): 84-88.
YUAN H, GAO S, CAO C Z. Quantitative estimation of heat capacity, entropy and gibbs free energy of monosubstituted alkanes [J]. Journal of Hu-nan University of Science and Technology (Natural Science Edition), 2009, 24(2): 84-88.
[16]张蕊, 冯长根, 姚朴, 等.钝感起爆药BNCP的热安全性[J]. 火炸药学报, 2003, 26(2): 66-69.
ZHANG R, FENG C G, YAO P, et al. The thermal safety of a new kind of initiating explosives BNCP [J]. Chinese Jounal of Explosives & Propellants, 2003, 26(2): 66-69.

备注/Memo

备注/Memo:
收稿日期:2024-10-09
第一作者:赵立(1999—),硕士研究生,主要从事含能材料的研究。E-mail: 1914543076@qq.com
通信作者:陆明(1963—),教授,博导,主要从事含能材料的研究。E-mail: luming@njust.edu.cn
更新日期/Last Update: 2025-04-07