[1]罗运军, 葛震. 含能黏合剂合成研究新进展[J]. 火炸药学报, 2011, 34(2): 1-5.
LUO Y J, GE Z. New research progress in the synthesis of energetic binders [J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 1-5.
[2]陈淼, 徐明辉, 刘宁, 等. 含能热塑性黏合剂的研究进展[J]. 爆破器材, 2020, 49(6): 1-8, 14.
CHEN M,XU M H,LIU N,et al. Research progress of energetic thermoplastic binders [J]. Explosive Materials, 2020, 49(6): 1-8, 14.
[3]刘建新, 汪存东, 潘洪波, 等. 含能叠氮高分子粘合剂的研究进展[J]. 高分子通报, 2014, 27(9): 10-18.
LIU J X, WANG C D, PAN H B, et al. Process in the research into energetic azide polymer binders [J]. Polymer Bulletin, 2014, 27(9): 10-18.
[4]JAROSZ T, STOLARCZYK A, WAWRZKIEWICZJALOWIECKA A, et al. Glycidyl azide polymer and its derivatives-versatile binders for explosives and pyrotechnics: tutorial review of recent progress [J]. Molecules, 2019, 24(24): 4475.
[5]AHAD E. Direct conversion of epichlorohydrin to glycidyl azide polymer: US 4891438 [P]. 1990-01-02.
[6]FRANKEL M B, FLANAGAN J E. Energetic hydroxy-terminated azido polymer: US 4268450 [P]. 1981-05-19.
[7]MEYER J, KEUL H, MOLLER M. Poly(glycidyl amine) and copolymers with glycidol and glycidyl amine repeating units: synthesis and characterization [J]. Macromolecules, 2011, 44(11): 4082-4091.
[8]FRANKEL M B, GRANT L R, FLANAGAN J E. Historical development of glycidyl azide polymer [J]. Journal of Propulsion and Power, 1992, 8(3): 560-563.
[9]MOHAN Y M, RAJU K M. Synthesis and characterization of low molecular weight azido polymers as high energetic plasticizers [J]. International Journal of Polymer Analysis and Characterization, 2004, 9(5/6): 289-304.
[10]BOOPATHI S K, HADJICHRISTIDIS N, GNANOU Y, et al. Direct access to poly(glycidyl azide) and its copolymers through anionic (co)polymerization of glycidyl azide [J]. Nature Communications, 2019, 10(1): 293.
[11]VANDENBERG E J. Polyethers containing azidomethyl side chains: US 3645917 [P]. 1972-02-29.
[12]EARL R A. Use of polymeric ethylene oxides in the preparation of glycidyl azide polymer: US 4486351 [P]. 1984-12-04.
[13]WAGNER R I, WILSON E R, GRANT L R, et al. Glycidyl azide polymer and method of preparation: US 4937361 [P]. 1990-06-26.
[14]王平, 夏中均, 尹莉莎, 等. 高分子量线型叠氮缩水甘油醚聚合物的合成[J]. 含能材料, 1998, 6(3): 102-106.
WANG P, XIA Z J, YIN L S, et al. Synthesis of high molecular weight glycidyl azide polymer [J]. Chinese Journal of Energetic Materials, 2011, 6(3): 102-106.
[15]MOHAN Y M, RAJU M P, RAJU K M. Synthesis, spectral and DSC analysis of glycidyl azide polymers containing different initiating diol units [J]. Journal of Applied Polymer Science, 2004, 93(5): 2157-2163.
[16]FRANKEL M B, WITUCKI E F, WOOLERY D O, Ⅱ. Aqueous process for the quantitative conversion of polyepichlorohydrin to glycidyl azide polymer: US 4379894 [P]. 1983-04-12.
[17]XU X D, LIU M H, YIN Y, et al. Synthesis of glycidyl azide polymers (GAPs) via binary ionic liquid-water mixtures without catalysts [J]. Green Chemistry, 2016, 18(5): 1364-1367.
[18]MURA C, FRUCI S, LAMIA P, et al. Synthesis of GAP and PAMMO homopolymers from mesylate polymeric precursors [J]. Journal of Energetic Materials, 2016, 34(2): 216-233.
[19]ABDELHAFIZ M, ELBEIH A. A new approach for synthesis of low-moisture glycidyl azide polymer [J]. Journal of Inorganic and General Chemistry, 2019, 645(11): 786-791.
[20]TIMOFEEV G V, HULNIK M I, VASILENKO I V, et al. Chlorinated solvent-free living cationic ring-opening polymerization of epichlorohydrin using BF3·OEt2as co-initiator: toward perfectly functionalized poly(epichlorohydrin) diols [J]. ACS Applied Polymer Materials, 2023, 5(8): 6549-6561.
[21]SHIN J A, JUNG J, MOON Y, et al. Facile synthesis of glycidyl azide polymer (GAP) in a tetrabutylammonium bromide/ethylene glycol based deep eutectic solvent [J]. ChemistrySelect, 2023, 8(30): e202300703.
[22]王旭朋, 罗运军, 郭凯, 等. 聚叠氮缩水甘油醚的合成与改性研究进展[J]. 精细化工, 2009, 26(8): 813-817.
WANG X P, LUO Y J, GUO K, et al. Research advances in synthesis and modification of glycidyl azide polymer [J]. Fine Chemicals, 2009, 26(8): 813-817.
[23]闫镒腾, 白森虎, 薛金强, 等. GAP的合成与化学改性研究进展[J]. 含能材料, 2023, 31(2): 190-200.
YAN Y T, BAI S H, XUE J Q, et al. Progress in the synthesis and chemical modification of glycidyl azide polymer [J]. Chinese Journal of Energetic Materials, 2023, 31(2): 190-200.
[24]MOHAN Y M, RAJU K M. Synthesis and characterization of HTPB-GAP cross-linked co-polymers [J]. Designed Monomers and Polymers, 2005, 8(2): 159-175.
[25]MOHAN Y M, RAJU K M. Synthesis and characterization of GAP-THF copolymers [J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2006, 55(3): 203-217.
[26]MOHAN Y M, RAJU M P, RAJU K M. Synthesis and characterization of GAP-PEG copolymers [J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54(7): 651-666.
[27]KAWAMOTO A M, HOLANDA J A S, BARBIERI U, et al. Synthesis and characterization of glycidyl azide-r-(3, 3-bis(azidomethyl)oxetane) copolymers [J]. Propellants, Explosives, Pyrotechnic, 2008, 33(5): 365-372.
[28]KAWAMOTO A M, DINIZ M F, LOURENO V L, et al. Synthesis and characterization of GAP/BAMO copolymers applied at high energetic composite propellants [J]. Journal of Aerospace Technology and Management, 2010, 2(3): 307-322.
[29]赵一搏, 罗运军, 李晓萌. BAMO/GAP无规共聚物的合成与表征[J]. 高分子材料科学与工程, 2012, 28(9): 1-4.
ZHAO Y B, LUO Y J, LI X M. Synthesis and characterization of BAMO-r-GAP copolymer [J]. Polymer Materials Science & Engineering, 2012, 28(9): 1-4.
[30]HAGEN T H, JENSEN T L, UNNEBERG E, et al. Curing of glycidyl azide polymer (GAP) diol using isocyanate, isocyanate-free, synchronous dual, and sequential dual curing systems [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 275-284.
[31]VARMA I K. High energy binders:glycidyl azide and allyl azide polymer [J]. Macromolecular Symposia, 2004, 210(1): 121-129.
[32]SUKHANOV G T, BOSOV K K, SUKHANOVA A G, et al. Synthesis and properties of glycidyl polymers bearing 1, 2, 4-triazol-5-one, 3-nitro-1, 2, 4-triazol-5-one andglycidyl azide units [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(10): 1526-1536.
[33]SUKHANOV G T, BOSOV K K, FILIPPOVA Y V, et al. New 5-aminotetrazole-based energetic polymers: synthesis, structure and properties [J]. Materials, 2022, 15(19): 6936.
[34]WU Y G, LI C D, GAO J, et al. Preparation and properties of azide-modified nitrocellulose and its click reaction curing elastomer [J]. Cellulose, 2022, 29(11): 6009-6020.
[35]罗运军, 丁善军, 张弛. 含能热塑性弹性体研究进展[J]. 中国材料进展, 2022, 41(2): 117-128.
LUO Y J, DING S J, ZHANG C. Research progress on energetic thermoplastic elastomers [J]. Materials China, 2022, 41(2): 117-128.
[36]菅晓霞, 肖乐勤, 左海丽, 等. GAP基热塑性弹性体的合成及表征[J]. 含能材料, 2008, 16(5): 614-617.
JIAN X X, XIAO L Q, ZUO H L, et al. Synthesis and characterization of GAPbased thermoplastic elastomer [J]. Chinese Journal of Energetic Materials, 2008, 16(5): 614-617.
[37]LI B J, ZHAO Y B, LIU G L, et al. Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE [J]. Journal of Thermal Analysis and Calorimetry, 2016, 126: 717-724.
[38]徐明辉, 杨伟涛, 卢先明, 等. GAP/PET嵌段型热塑性聚氨酯弹性体的低温力学性能[J]. 火炸药学报, 2022, 45(1): 67-72.
XU M H, YANG W T, LU X M, et al. Cryogenic mechanical properties of GAP/PET block thermoplastic elastomers [J]. Chinese Journal of Explosives & Propellants, 2022, 45(1); 67-72.
[39]PISHARATH S, ANG H G. Synthesis and thermal decomposition of GAP-Poly(BAMO) copolymer [J]. Polymer Degradation and Stability, 2007, 92(7): 1365-1377.
[40]SEOL Y H, KWEON J O, KIM Y J, et al. Synthesis and characterization of GAP or GAP-co-BO copolymer-based energetic thermoplastic polyurethane [J]. Applied Chemistry for Engineering, 2019, 30(6): 673-680.
[41]卢先明,陈淼,莫洪昌, 等. GAP基含能热塑性弹性体可控聚合与应用[J]. 含能材料, 2022, 30(6): 542-549.
LU X M, CHEN M, MO H C, et al. Controllable polymerization and application of GAP-based energetic thermoplastic elastomers [J]. Chinese Journal of Energetic Materials, 2022, 30(6): 542-549.
[42]SEE Y F A, PISHARATH S, ONG Y J, et al. Fluoroalkylated-GAP copolymers (GAP-FP) as promising energetic binders [J]. Reactive and Functional Polymers, 2022, 181: 105415.
[43]ZHOU Y Q, PENG R F, JIN B. Superior enhancement in mechanical properties of polyurethane-based multifunctional GAP partially grafted with fluorinated polyether via catalyst-free click reaction [J]. ChemistrySelect,2024, 9(30): e202401499.
[44]吴帅, 朱金华, 文庆珍. 聚氨酯基互穿网络聚合物的研究进展[J]. 材料开发与应用, 2011, 26(2): 92-95.
WU S, ZHU J H, WEN Q Z. Recent developments of polyurethane IPN [J]. Development and Application of Materials, 2011, 26(2): 92-95.
[45]TANVER A, HUANG M H, LUO Y J, et al. Energetic interpenetrating polymer network based on orthogonal azido-alkyne click and polyurethane for potential solid propellant [J]. RSC advances, 2015, 5(79): 64478-64485.
[46]OU Y P, ZHAO Q, ZHANG W, et al. Fabrication of glycidyl azide polymer-hydroxyl terminated polyether semi-interpenetrating network via synchronous dual curing system [J]. Materials Letters, 2019, 237: 152-155.
[47]ZHOU Y Q, ZHANG Q Y, PENG R F, et al. Interpenetrating polymer networks of polyurethane and polytriazole: effect of the composition and number average molecular weight of glycidyl azide polymer on the mechanical properties and morphology [J]. Polymers for Advanced Technologies, 2024, 35(5): e6409.
[48]谭惠民. 固体推进剂化学与技术[M]. 北京:北京理工大学出版社, 2015: 297-307.
TAN H M. The chemistry and technology of solid rocket propellant [M]. Beijing: Beijing Institute of Technology Press, 2015: 297-307.
[49]AHAD E. Branched hydroxyl-terminated aliphatic polyethers: US 4882395 [P]. 1989-11-21.
[50]AHAD E. Branched energetic polyether elastomers: US 5130381 [P]. 1992-07-14.
[51]AHAD E. Branched energetic polyether elastomers: US 5191034 [P]. 1993-03-02.
[52]冯增国, 赵大箐, 侯竹林. 支化聚叠氮缩水甘油醚(B-GAP)的制备研究[J]. 兵工学报, 1999, 20(1): 32-35.
FENG Z G, ZHAO D Q, HOU Z L. A preparative study on branched glycidyl azidepolymer (B-GAP) [J]. Acta Armamentarii, 1999, 20(1): 32-35.
[53]王平, 郁卫飞, 刘春. 支化聚叠氮缩水甘油醚硝酸酯的制备[J]. 含能材料, 2008, 16(4): 395-397.
WANG P, YU W F, LIU C. Preparation of branched glycidyl azide polymer nitrate [J].Chinese Journal of Energetic Materials, 2008, 16(4): 395-397.
[54]张弛, 李杰, 罗运军, 等. 碳纳米管交联改性叠氮缩水甘油醚聚合物粘合剂胶片的制备及性能[J]. 高分子材料科学与工程, 2013, 29(11): 105-108.
ZHANG C, LI J, LUO Y J, et al. Preparation and properties of carbon nanotubes modified glycidyl azide polymer binder film [J]. Polymer Materials Science & Engineering, 2013, 29(11): 105-108.
[55]HUANG T, JIN B, PENG R F, et al. Synthesis and characterization of [60]fullerene-glycidyl azide polymer and its thermal decomposition [J]. Polymers, 2015, 7(5): 896-908.
[56]WANG S, LIU C H, GUO X, et al. Effects of crosslinking degree and carbon nanotubes as filler on composites based on glycidyl azide polymer and propargylterminated polyether for potential solid propellant application [J]. Journal of Applied Polymer Science, 2017, 134(39): 45359.
[57]张世林, 原浩, 齐乐, 等. 氧化石墨烯对GAP改性球形药复合材料热膨胀系数的影响[J]. 含能材料, 2021, 29(11): 1061-1067.
ZHANG S L, YUAN H, QI L, et al. Effect of graphene oxide on thermal expansion coefficient of GAP modified spherical propellant composites [J]. Chinese Journal of Energetic Materials, 2021, 29(11): 1061-1067.