[1]申卫峰.GAP黏合剂合成与改性的研究进展[J].爆破器材,2024,53(06):1-11.[doi:10.3969/j.issn.1001-8352.2024.06.001]
 SHEN Weifeng.Research Progress on the Synthesis and Modification of GAP Binders[J].EXPLOSIVE MATERIALS,2024,53(06):1-11.[doi:10.3969/j.issn.1001-8352.2024.06.001]
点击复制

GAP黏合剂合成与改性的研究进展()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年06
页码:
1-11
栏目:
基础理论
出版日期:
2024-12-06

文章信息/Info

Title:
Research Progress on the Synthesis and Modification of GAP Binders
文章编号:
5969
作者:
申卫峰
①宏大爆破工程集团有限责任公司(广东广州,510623)
②南京理工大学化学与化工学院(江苏南京,210094)
Author(s):
SHEN Weifeng
① Hongda Blasting Engineering Group Co., Ltd. (Guangdong Guangzhou, 510623)
② School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
聚叠氮缩水甘油醚(GAP)含能黏合剂合成方法热塑性弹性体化学改性
Keywords:
glycidyl azide polymer (GAP) energetic binder synthesis method thermoplastic elastomer chemical modification
分类号:
TQ560; TJ55
DOI:
10.3969/j.issn.1001-8352.2024.06.001
文献标志码:
A
摘要:
聚叠氮缩水甘油醚(GAP)黏合剂合成工艺的优化和通过改性来获得综合性能优异的GAP基聚合物,是目前含能材料领域的研究热点。主要介绍了GAP黏合剂的合成方法与发展动向;综述了近期GAP黏合剂改性的研究进展;指出了现阶段GAP黏合剂研究中的生产成本过高、合成溶剂毒性大、固化后力学性能欠佳等问题。最后,展望了GAP未来的合成趋势:主要以探索绿色、安全、高效且低成本的合成工艺路线以及开发分子量可控GAP的合成策略为主。可以开展GAP基含能热塑性弹性体研究、探索新型固化体系等来赋予GAP多功能性,从而拓宽GAP的应用领域。
Abstract:
The optimization of the synthesis process of glycidyl azide polymer (GAP) binders and the modification to obtain GAP based polymers with excellent comprehensive properties are currently research hotspots in the field of energetic materials. The synthesis methods and development trends of GAP binders was introduced. The recent research progress on modification of GAP binders was summarized. The problems of high production costs, high toxicity of synthetic solvents, and poor mechanical properties after curing in the current research on GAP binders were pointed out. Finally, the future synthesis trends of GAP were discussed, mainly focusing on exploring green, safe, efficient and low-cost process synthesis routes, developing synthesis strategies for GAP with controllable molecular weight. Research on GAP based energetic thermoplastic elastomers and exploration of new curing systems can be conducted to endow GAP with multifunctionality and broaden its application fields.

参考文献/References:

[1]罗运军, 葛震. 含能黏合剂合成研究新进展[J]. 火炸药学报, 2011, 34(2): 1-5.
LUO Y J, GE Z. New research progress in the synthesis of energetic binders [J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 1-5.
[2]陈淼, 徐明辉, 刘宁, 等. 含能热塑性黏合剂的研究进展[J]. 爆破器材, 2020, 49(6): 1-8, 14.
CHEN M,XU M H,LIU N,et al. Research progress of energetic thermoplastic binders [J]. Explosive Materials, 2020, 49(6): 1-8, 14.
[3]刘建新, 汪存东, 潘洪波, 等. 含能叠氮高分子粘合剂的研究进展[J]. 高分子通报, 2014, 27(9): 10-18.
LIU J X, WANG C D, PAN H B, et al. Process in the research into energetic azide polymer binders [J]. Polymer Bulletin, 2014, 27(9): 10-18.
[4]JAROSZ T, STOLARCZYK A, WAWRZKIEWICZJALOWIECKA A, et al. Glycidyl azide polymer and its derivatives-versatile binders for explosives and pyrotechnics: tutorial review of recent progress [J]. Molecules, 2019, 24(24): 4475.
[5]AHAD E. Direct conversion of epichlorohydrin to glycidyl azide polymer: US 4891438 [P]. 1990-01-02.
[6]FRANKEL M B, FLANAGAN J E. Energetic hydroxy-terminated azido polymer: US 4268450 [P]. 1981-05-19.
[7]MEYER J, KEUL H, MOLLER M. Poly(glycidyl amine) and copolymers with glycidol and glycidyl amine repeating units: synthesis and characterization [J]. Macromolecules, 2011, 44(11): 4082-4091.
[8]FRANKEL M B, GRANT L R, FLANAGAN J E. Historical development of glycidyl azide polymer [J]. Journal of Propulsion and Power, 1992, 8(3): 560-563.
[9]MOHAN Y M, RAJU K M. Synthesis and characterization of low molecular weight azido polymers as high energetic plasticizers [J]. International Journal of Polymer Analysis and Characterization, 2004, 9(5/6): 289-304.
[10]BOOPATHI S K, HADJICHRISTIDIS N, GNANOU Y, et al. Direct access to poly(glycidyl azide) and its copolymers through anionic (co)polymerization of glycidyl azide [J]. Nature Communications, 2019, 10(1): 293.
[11]VANDENBERG E J. Polyethers containing azidomethyl side chains: US 3645917 [P]. 1972-02-29.
[12]EARL R A. Use of polymeric ethylene oxides in the preparation of glycidyl azide polymer: US 4486351 [P]. 1984-12-04.
[13]WAGNER R I, WILSON E R, GRANT L R, et al. Glycidyl azide polymer and method of preparation: US 4937361 [P]. 1990-06-26.
[14]王平, 夏中均, 尹莉莎, 等. 高分子量线型叠氮缩水甘油醚聚合物的合成[J]. 含能材料, 1998, 6(3): 102-106.
WANG P, XIA Z J, YIN L S, et al. Synthesis of high molecular weight glycidyl azide polymer [J]. Chinese Journal of Energetic Materials, 2011, 6(3): 102-106.
[15]MOHAN Y M, RAJU M P, RAJU K M. Synthesis, spectral and DSC analysis of glycidyl azide polymers containing different initiating diol units [J]. Journal of Applied Polymer Science, 2004, 93(5): 2157-2163.
[16]FRANKEL M B, WITUCKI E F, WOOLERY D O, Ⅱ. Aqueous process for the quantitative conversion of polyepichlorohydrin to glycidyl azide polymer: US 4379894 [P]. 1983-04-12.
[17]XU X D, LIU M H, YIN Y, et al. Synthesis of glycidyl azide polymers (GAPs) via binary ionic liquid-water mixtures without catalysts [J]. Green Chemistry, 2016, 18(5): 1364-1367.
[18]MURA C, FRUCI S, LAMIA P, et al. Synthesis of GAP and PAMMO homopolymers from mesylate polymeric precursors [J]. Journal of Energetic Materials, 2016, 34(2): 216-233.
[19]ABDELHAFIZ M, ELBEIH A. A new approach for synthesis of low-moisture glycidyl azide polymer [J]. Journal of Inorganic and General Chemistry, 2019, 645(11): 786-791.
[20]TIMOFEEV G V, HULNIK M I, VASILENKO I V, et al. Chlorinated solvent-free living cationic ring-opening polymerization of epichlorohydrin using BF3·OEt2as co-initiator: toward perfectly functionalized poly(epichlorohydrin) diols [J]. ACS Applied Polymer Materials, 2023, 5(8): 6549-6561.
[21]SHIN J A, JUNG J, MOON Y, et al. Facile synthesis of glycidyl azide polymer (GAP) in a tetrabutylammonium bromide/ethylene glycol based deep eutectic solvent [J]. ChemistrySelect, 2023, 8(30): e202300703.
[22]王旭朋, 罗运军, 郭凯, 等. 聚叠氮缩水甘油醚的合成与改性研究进展[J]. 精细化工, 2009, 26(8): 813-817.
WANG X P, LUO Y J, GUO K, et al. Research advances in synthesis and modification of glycidyl azide polymer [J]. Fine Chemicals, 2009, 26(8): 813-817.
[23]闫镒腾, 白森虎, 薛金强, 等. GAP的合成与化学改性研究进展[J]. 含能材料, 2023, 31(2): 190-200.
YAN Y T, BAI S H, XUE J Q, et al. Progress in the synthesis and chemical modification of glycidyl azide polymer [J]. Chinese Journal of Energetic Materials, 2023, 31(2): 190-200.
[24]MOHAN Y M, RAJU K M. Synthesis and characterization of HTPB-GAP cross-linked co-polymers [J]. Designed Monomers and Polymers, 2005, 8(2): 159-175.
[25]MOHAN Y M, RAJU K M. Synthesis and characterization of GAP-THF copolymers [J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2006, 55(3): 203-217.
[26]MOHAN Y M, RAJU M P, RAJU K M. Synthesis and characterization of GAP-PEG copolymers [J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54(7): 651-666.
[27]KAWAMOTO A M, HOLANDA J A S, BARBIERI U, et al. Synthesis and characterization of glycidyl azide-r-(3, 3-bis(azidomethyl)oxetane) copolymers [J]. Propellants, Explosives, Pyrotechnic, 2008, 33(5): 365-372.
[28]KAWAMOTO A M, DINIZ M F, LOURENO V L, et al. Synthesis and characterization of GAP/BAMO copolymers applied at high energetic composite propellants [J]. Journal of Aerospace Technology and Management, 2010, 2(3): 307-322.
[29]赵一搏, 罗运军, 李晓萌. BAMO/GAP无规共聚物的合成与表征[J]. 高分子材料科学与工程, 2012, 28(9): 1-4.
ZHAO Y B, LUO Y J, LI X M. Synthesis and characterization of BAMO-r-GAP copolymer [J]. Polymer Materials Science & Engineering, 2012, 28(9): 1-4.
[30]HAGEN T H, JENSEN T L, UNNEBERG E, et al. Curing of glycidyl azide polymer (GAP) diol using isocyanate, isocyanate-free, synchronous dual, and sequential dual curing systems [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 275-284.
[31]VARMA I K. High energy binders:glycidyl azide and allyl azide polymer [J]. Macromolecular Symposia, 2004, 210(1): 121-129.
[32]SUKHANOV G T, BOSOV K K, SUKHANOVA A G, et al. Synthesis and properties of glycidyl polymers bearing 1, 2, 4-triazol-5-one, 3-nitro-1, 2, 4-triazol-5-one andglycidyl azide units [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(10): 1526-1536.
[33]SUKHANOV G T, BOSOV K K, FILIPPOVA Y V, et al. New 5-aminotetrazole-based energetic polymers: synthesis, structure and properties [J]. Materials, 2022, 15(19): 6936.
[34]WU Y G, LI C D, GAO J, et al. Preparation and properties of azide-modified nitrocellulose and its click reaction curing elastomer [J]. Cellulose, 2022, 29(11): 6009-6020.
[35]罗运军, 丁善军, 张弛. 含能热塑性弹性体研究进展[J]. 中国材料进展, 2022, 41(2): 117-128.
LUO Y J, DING S J, ZHANG C. Research progress on energetic thermoplastic elastomers [J]. Materials China, 2022, 41(2): 117-128.
[36]菅晓霞, 肖乐勤, 左海丽, 等. GAP基热塑性弹性体的合成及表征[J]. 含能材料, 2008, 16(5): 614-617.  
JIAN X X, XIAO L Q, ZUO H L, et al. Synthesis and characterization of GAPbased thermoplastic elastomer [J]. Chinese Journal of Energetic Materials, 2008, 16(5): 614-617.
[37]LI B J, ZHAO Y B, LIU G L, et al. Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE [J]. Journal of Thermal Analysis and Calorimetry, 2016, 126: 717-724.
[38]徐明辉, 杨伟涛, 卢先明, 等. GAP/PET嵌段型热塑性聚氨酯弹性体的低温力学性能[J]. 火炸药学报, 2022, 45(1): 67-72.
XU M H, YANG W T, LU X M, et al. Cryogenic mechanical properties of GAP/PET block thermoplastic elastomers [J]. Chinese Journal of Explosives & Propellants, 2022, 45(1); 67-72.
[39]PISHARATH S, ANG H G. Synthesis and thermal decomposition of GAP-Poly(BAMO) copolymer [J]. Polymer Degradation and Stability, 2007, 92(7): 1365-1377.
[40]SEOL Y H, KWEON J O, KIM Y J, et al. Synthesis and characterization of GAP or GAP-co-BO copolymer-based energetic thermoplastic polyurethane [J]. Applied Chemistry for Engineering, 2019, 30(6): 673-680.
[41]卢先明,陈淼,莫洪昌, 等. GAP基含能热塑性弹性体可控聚合与应用[J]. 含能材料, 2022, 30(6): 542-549.
LU X M, CHEN M, MO H C, et al. Controllable polymerization and application of GAP-based energetic thermoplastic elastomers [J]. Chinese Journal of Energetic Materials, 2022, 30(6): 542-549.
[42]SEE Y F A, PISHARATH S, ONG Y J, et al. Fluoroalkylated-GAP copolymers (GAP-FP) as promising energetic binders [J]. Reactive and Functional Polymers, 2022, 181: 105415.
[43]ZHOU Y Q, PENG R F, JIN B. Superior enhancement in mechanical properties of polyurethane-based multifunctional GAP partially grafted with fluorinated polyether via catalyst-free click reaction [J]. ChemistrySelect,2024, 9(30): e202401499.
[44]吴帅, 朱金华, 文庆珍. 聚氨酯基互穿网络聚合物的研究进展[J]. 材料开发与应用, 2011, 26(2): 92-95.
WU S, ZHU J H, WEN Q Z. Recent developments of polyurethane IPN [J]. Development and Application of Materials, 2011, 26(2): 92-95.
[45]TANVER A, HUANG M H, LUO Y J, et al. Energetic interpenetrating polymer network based on orthogonal azido-alkyne click and polyurethane for potential solid propellant [J]. RSC advances, 2015, 5(79): 64478-64485.
[46]OU Y P, ZHAO Q, ZHANG W, et al. Fabrication of glycidyl azide polymer-hydroxyl terminated polyether semi-interpenetrating network via synchronous dual curing system [J]. Materials Letters, 2019, 237: 152-155.
[47]ZHOU Y Q, ZHANG Q Y, PENG R F, et al. Interpenetrating polymer networks of polyurethane and polytriazole: effect of the composition and number average molecular weight of glycidyl azide polymer on the mechanical properties and morphology [J]. Polymers for Advanced Technologies, 2024, 35(5): e6409.
[48]谭惠民. 固体推进剂化学与技术[M]. 北京:北京理工大学出版社, 2015: 297-307.
TAN H M. The chemistry and technology of solid rocket propellant [M]. Beijing: Beijing Institute of Technology Press, 2015: 297-307.
[49]AHAD E. Branched hydroxyl-terminated aliphatic polyethers: US 4882395 [P]. 1989-11-21.
[50]AHAD E. Branched energetic polyether elastomers: US 5130381 [P]. 1992-07-14.
[51]AHAD E. Branched energetic polyether elastomers: US 5191034 [P]. 1993-03-02.
[52]冯增国, 赵大箐, 侯竹林. 支化聚叠氮缩水甘油醚(B-GAP)的制备研究[J]. 兵工学报, 1999, 20(1): 32-35.
FENG Z G, ZHAO D Q, HOU Z L. A preparative study on branched glycidyl azidepolymer (B-GAP) [J]. Acta Armamentarii, 1999, 20(1): 32-35.
[53]王平, 郁卫飞, 刘春. 支化聚叠氮缩水甘油醚硝酸酯的制备[J]. 含能材料, 2008, 16(4): 395-397.
WANG P, YU W F, LIU C. Preparation of branched glycidyl azide polymer nitrate [J].Chinese Journal of Energetic Materials, 2008, 16(4): 395-397.
[54]张弛, 李杰, 罗运军, 等. 碳纳米管交联改性叠氮缩水甘油醚聚合物粘合剂胶片的制备及性能[J]. 高分子材料科学与工程, 2013, 29(11): 105-108.
ZHANG C, LI J, LUO Y J, et al. Preparation and properties of carbon nanotubes modified glycidyl azide polymer binder film [J]. Polymer Materials Science & Engineering, 2013, 29(11): 105-108.
[55]HUANG T, JIN B, PENG R F, et al. Synthesis and characterization of [60]fullerene-glycidyl azide polymer and its thermal decomposition [J]. Polymers, 2015, 7(5): 896-908.
[56]WANG S, LIU C H, GUO X, et al. Effects of crosslinking degree and carbon nanotubes as filler on composites based on glycidyl azide polymer and propargylterminated polyether for potential solid propellant application [J]. Journal of Applied Polymer Science, 2017, 134(39): 45359.
[57]张世林, 原浩, 齐乐, 等. 氧化石墨烯对GAP改性球形药复合材料热膨胀系数的影响[J]. 含能材料, 2021, 29(11): 1061-1067.
ZHANG S L, YUAN H, QI L, et al. Effect of graphene oxide on thermal expansion coefficient of GAP modified spherical propellant composites [J]. Chinese Journal of Energetic Materials, 2021, 29(11): 1061-1067.

备注/Memo

备注/Memo:
收稿日期:2024-08-06
第一作者:申卫峰(1981—),男,博士研究生,高级工程师,主要从事火炸药技术研究。E-mail:shenwf81@163.com
更新日期/Last Update: 2024-12-04