[1]李昱锦①,缪玉松①,李斌②,等.对称双线性起爆下爆轰波的轴向传播特性[J].爆破器材,2025,54(01):7-13.[doi:10.3969/j.issn.1001-8352.2025.01.002]
 LI Yujin,MIAO Yusong,LI Bin,et al.Characteristics of Axial Propagation of Detonation Waves in Symmetric Bilinear Detonation[J].EXPLOSIVE MATERIALS,2025,54(01):7-13.[doi:10.3969/j.issn.1001-8352.2025.01.002]
点击复制

对称双线性起爆下爆轰波的轴向传播特性()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年01
页码:
7-13
栏目:
基础理论
出版日期:
2025-01-09

文章信息/Info

Title:
Characteristics of Axial Propagation of Detonation Waves in Symmetric Bilinear Detonation
文章编号:
5961
作者:
李昱锦缪玉松李斌黄飞飞葛帅杨涛吴佳怡
①青岛理工大学理学院(山东青岛,266525)
②中铁二十二局集团有限公司(北京,100043)
③青岛海德工程建设集团股份有限公司(山东青岛,266100)
Author(s):
LI Yujin MIAO Yusong LI Bin HUANG Feifei GE Shuai YANG Tao WU Jiayi
① School of Science, Qingdao University of Technology (Shandong Qingdao, 266525)
② China Railway 22nd Bureau Group Co., Ltd. (Beijing, 100043)
③ Qingdao Haide Engineering Group Co., Ltd. (Shandong Qingdao, 266100)
关键词:
对称双线性起爆连续压导探针聚能效应爆速爆压
Keywords:
symmetric bilinear detonation continuous pressure-guided probe energy cumulative effect detonation velocity detonation pressure
分类号:
TJ55; TD235
DOI:
10.3969/j.issn.1001-8352.2025.01.002
文献标志码:
A
摘要:
利用爆轰波的碰撞可在药包中产生聚能效应,从而改善爆轰效果。为分析爆轰波碰撞聚能特性,首先,基于爆轰波碰撞理论,推导了对称双线性起爆下条形药包中爆轰波的轴向传播速度;其次,利用LS-DYNA有限元软件分析了爆轰波的轴向传播特性;最后,利用连续压导探针对药包中心轴线处的爆速进行测定,并对爆轰波在轴向达到稳定时的爆压进行分析。结果表明:爆轰波在轴向的传播达到稳定后,马赫波传播速度接近导爆索的爆速,马赫杆占据整个药包直径,并以近似平面波的形式稳定传播。数值计算与现场实验得到的爆轰参数相近,均与导爆索的设定值相当,且爆速比铵油炸药的设定爆速高出60%左右,爆压高出160%左右。理论分析、数值计算及现场实验得到的爆轰参数互相吻合。研究结果表明,对称双线性起爆技术能显著提高炸药的爆轰性能,实现爆轰波的聚能效应。
Abstract:
The collision of detonation waves can generate energy cumulative effect in the charge, thereby improving the detonation effect. In order to analyze the collision and energy cumulative characteristics of detonation waves, firstly, based on the theory of detonation wave collision, the axial propagation velocity of detonation waves in strip charges under symmetric bilinear detonation was derived. Secondly, the axial propagation characteristics of detonation waves were analyzed using ANSYS/LSDYNA finite element software. Finally, the detonation velocity at the center axis of the charge was measured using a continuous pressureguided probe, and the detonation pressure at which the detonation wave reached stability in the axial direction was analyzed. The results show that, after the axial propagation of the detonation wave reaches stability, the propagation velocity of Mach wave approaches the detonation velocity of the detonating cord, and the Mach stem occupies the entire diameter of the charge and propagates stably in the form of an approximate plane wave. Detonation parameters obtained from numerical calculations and experiments are similar to the set values of detonating cords. The detonation velocity is about 60% higher than the set detonation velocity of ammonium oil explosives, and the detonation pressure is about 160% higher. Detonation parameters obtained from theoretical analysis, numerical calculations, and experiments are consistent with each other. In symmetric bilinear detonation technology, detonation performances of explosives is significantly improved, and the energy cumulative effect of detonation waves can be achieved.

参考文献/References:

[1]杨权中, 范宝春, 杨崇惠. 带隔板装药中爆轰波的相互作用[J]. 南京理工大学学报(自然科学版), 1982(2): 23-30.

YANG Q Z, FAN B C, YANG C H. Interaction of the detonation waves in the explosive charge with the inserter[J]. Journal of Nanjing University of Science and Technology, 1982(2): 23-30.
[2]潘建, 张先锋, 何勇, 等. 带隔板装药爆轰波马赫反射理论研究和数值模拟[J]. 爆炸与冲击, 2016, 36(4): 449-456.
PAN J, ZHANG X F, HE Y, et al. Theoretical and numerical study on detonation wave Mach reflection in high explosive charge with waveshaper[J]. Explosion and Shock Waves, 2016, 36(4): 449-456.
[3]刘洪榕, 胡立双, 胡双启, 等. 多点同步起爆环形传爆药柱数值模拟研究[J]. 爆破, 2013, 30(4): 129-132.
LIU H R, HU L S, HU S Q, et al. Study of annular booster pellet under multi-point synchronous initiation by numerical simulation [J]. Blasting, 2013, 30(4): 129-132.
[4]赵长啸, 龙源, 纪冲, 等. 多点起爆下药型罩表面压力分布规律研究[J]. 高压物理学报, 2013, 27(1): 83-89.
ZHAO C X, LONG Y, JI C, et al. Distribution law of pressure on liner surface under multi-point initiation [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 83-89.
[5]LI W B, WANG X M, LI W B. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator [J]. International Journal of Impact Engineering, 2010, 37(4): 414-424.
[6]沈飞, 王辉, 罗一鸣. 一种同轴双元组合装药的爆轰波形及驱动性能[J]. 火炸药学报, 2018, 41(6): 588-593.
SHEN F, WANG H, LUO Y M. Detonation waveform and driving performance of a kind of coaxial binary composite charge [J]. Chinese Journal of Explosives & Propellants, 2018, 41(6): 588-593.
[7]ZHANG X F, HUANG Z X, QIAO L. Detonation wave propagation in double-layer cylindrical high explosive charges[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 210-218.
[8]缪玉松, 郭建, 陈翔, 等. 矿用条形药包轴向爆轰波碰撞聚能特性研究[J]. 金属矿山, 2022(7): 113-119.
MIAO Y S, GUO J, CHEN X, et al. Study on propagation characteristics of axial detonation wave of mining linear charges [J]. Metal Mine, 2022(7): 113-119.
[9]MIAO Y S, LI X J, KONG L, et al. Study on the symmetric bilinear initiating technique of deep-hole boulder blasting in the TBM tunnel excavation[J]. Tunnelling and Underground Space Technology, 2021, 111: 103871.
[10]DUNNE B B. Mach reflection of detonation waves in condensed high explosives [J]. Physics of Fluids, 1961, 4(7): 918-924.
[11]DUNNE B B. Mach reflection of detonation waves in condensed high explosives. II [J]. Physics of Fluids, 1964, 7(10): 1707-1712.
[12]DUNNE B B. Mach reflection of 700 kBar shock waves in gases [J]. Physics of Fluids, 1961, 4(12): 1565-1566.
[13]MULLER F. Mach-reflection of detonation waves in condensed high explosives[J]. Propellants, Explosives, Pyrotechnics, 1978, 3(4): 115-118.
[14]汤明钧, 杨权中, 阎秀华. 破甲弹中爆轰波相互作用的初步研究[J]. 南京理工大学学报(自然科学版), 1979(1): 145-156.
[15]范宝春, 杨权中, 杨崇惠. 轴对称爆轰波的传播和相互作用[J]. 爆炸与冲击, 1984, 4(1): 68-78.
FAN B C, YANG Q Z, YANG C H. The propagation and interactions of axisymmetric detonation waves[J]. Explosion and Shock Waves, 1984, 4(1): 68-78.
[16]HULL L M. Mach reflection of spherical detonation waves[C]//Tenth International Detonation Symposium. Boston, MA, US, 1993.
[17]刘举鹏, 蔡瑞娇, 陈福梅. 硅炸药内双爆轰波相互作用的实验研究[J]. 北京理工大学学报, 1993, 13(2): 198-202.
LIU J P, CAI R J, CHEN F M. Experimental research on the double detonation wave interaction in silicone rubber explosives[J]. Journal of Beijing Institute of Technology, 1993, 13(2): 198-202.
[18]缪玉松, 李晓杰, 闫鸿浩, 等. 爆轰波碰撞聚能效应及其数值分析[J]. 工程爆破, 2016, 22(5): 45-49.
MIAO Y S, LI X J, YAN H H, et al. Simulation analysis of detonation wave collision munroe effect [J]. Engineering Blasting, 2016, 22(5): 45-49.
[19]ZHANG K F, LIANG M Z, LU F Y, et al. Echanics of plate fracture from detonation wave interaction [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(2): 188-197.
[20]方涛, 梁民族, 李翔宇. 爆轰波叠加作用下金属杆条断裂行为分析[J]. 火炸药学报, 2020, 43(3): 303-307.
FANG T, LIANG M Z, LI X Y. Analysis of rod-fracture behavior under the effects of detonation wave interaction[J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 303-307.
[21]沈晓斌. 起爆方式对聚能射流特性影响数值模拟研究[J]. 火炮发射与控制学报, 2022, 43(3): 13-20.
SHEN X B. Numerical simulation of the influence of detonation modes on shaped charge jet characteristics[J]. Journal of Gun Launch & Control, 2022, 43(3): 13-20.
[22]ZHANG Q, JIAN H T, ZHENG G Q, et al. The interaction of detonation waves by multipoint initiation under smallsize charge condition[J]. Physics of Fluids, 2023, 35(11): 117105.
[23]TAN L H, REN Y X, WU Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows [J]. Journal of Fluid Mechanics, 2005, 546: 341-362.
[24]CARDOSO D, TEIXEIRA-DIAS F. Modelling the formation of explosively formed projectiles (EFP)[J]. International Journal of Impact Engineering, 2016, 93: 116-127.
[25]段云, 熊代余, 李国仲, 等. 典型工业炸药爆炸灾害效应的数值模拟[J]. 河南理工大学学报(自然科学版), 2011, 30(4): 381-385.
DUAN Y, XIONG D Y, LI G Z, et al. Numerical simulation of disaster effects induced by typical industrial explosive explosion [J]. Journal of Henan Polytechnic University (Natural Science), 2011, 30(4): 381-385.
[26]李晓杰, 李瑞勇, 马玉磬, 等. 工业炸药线型聚能切割器的研制[J]. 工程爆破, 2004, 10(4): 5-7, 4.
LI X J, LI R Y, MA Y Q, et al. Development of a linear shaped charge loaded with an industrial explosive[J]. Engineering Blasting, 2004, 10(4): 5-7, 4.
[27]张宝, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001.
[28]李科斌. 炸药爆轰及驱动性能的连续电阻测试方法研究[D]. 大连: 大连理工大学, 2019.
LI K B. Research on continuous electric resistance testing method of detonation performance and driving characteristics of explosives [D]. Dalian: Dalian University of Technology, 2019.
[29]李明明, 李国新. 光纤在燃速及爆速测试中的应用[J]. 火工品, 2000(3): 13-16.
LI M M, LI G X. Application of optical fibers for measuring combustion and detonation velocities[J]. Initiators & Pyrotechnics, 2000(3): 13-16.

备注/Memo

备注/Memo:
收稿日期:2024-06-30
基金项目:国家自然科学基金(11672067);山东省自然科学基金(ZR2019BA023)
第一作者:李昱锦(1998—),男,硕士研究生,主要从事爆炸力学的研究。E-mail: 15340697963@163.com
通信作者:缪玉松(1986—),男,副教授,硕导,主要从事爆炸力学、工程爆破的研究。E-mail: miaoyusong@qut.edu.cn
更新日期/Last Update: 2025-01-10