[1]阿比尔的①②,胡尊镕①②,傅林①②,等.CO2相变致裂岩石的损伤范围的计算及影响因素研究[J].爆破器材,2024,53(06):41-49.[doi:10.3969/j.issn.1001-8352.2024.06.007]
 ABI Erdi,HU Zunrong,FU Lin,et al.Damage Range Calculation and Influencing Factors of Rock Fractures Caused by CO2 Phase Transition Blasting[J].EXPLOSIVE MATERIALS,2024,53(06):41-49.[doi:10.3969/j.issn.1001-8352.2024.06.007]
点击复制

CO2相变致裂岩石的损伤范围的计算及影响因素研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年06
页码:
41-49
栏目:
爆炸材料
出版日期:
2024-12-06

文章信息/Info

Title:
Damage Range Calculation and Influencing Factors of Rock Fractures Caused by CO2 Phase Transition Blasting
文章编号:
5958
作者:
阿比尔的①②胡尊镕①②傅林①②韩亚峰①②刘明维①②
①重庆交通大学国家内河航道整治工程技术研究中心 (重庆,400074)
②重庆交通大学山区公路水运交通地质减灾重庆市教委重点实验室(重庆,400074)
Author(s):
ABI Erdi①② HU Zunrong①② FU Lin①② HAN Yafeng①② LIU Mingwei①②
① Nationl Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University (Chongqing, 400074)
② Key Laboratory of Geological Hazards Mitigation for Mountainous Highway and Waterway, Chongqing Municipal Education Commission, Chongqing Jiaotong University (Chongqing, 400074)
关键词:
液态CO2相变致裂损伤半径泄能片厚度CO2充装质量
Keywords:
liquid CO2 phase transition blasting damage radius thickness of energy release sheet CO2 filling mass
分类号:
TD235
DOI:
10.3969/j.issn.1001-8352.2024.06.007
文献标志码:
A
摘要:
在CO2相变致裂岩石技术中,为探究岩石损伤范围与CO2相变致裂参数的关系,根据Mises准则和损伤力学理论建立了CO2相变冲击岩石的致裂损伤半径计算公式。利用3DEC软件模拟了不同泄能片厚度下岩石的致裂损伤半径,并与理论计算相比较,验证了所建模型的准确性。分析了泄能片厚度、岩石强度、致裂孔孔径、CO2充装质量等因素对岩石损伤的影响规律。结果表明:岩石的致裂损伤半径与泄能片厚度、CO2充装质量呈对数增长关系,与岩石强度、致裂孔孔径呈指数衰减关系;增加泄能片厚度是增大岩石致裂损伤半径的最有效手段;致裂孔孔径的增大会使岩石的损伤范围迅速减小。可为CO2相变致裂岩石的损伤机制、技术参数选取等提供参考。
Abstract:
In the technology of rock fractures caused by CO2 phase transition, in order to study the relationship between the damage range of rocks and the CO2 phase transition fracturing parameters, a calculation formula for the damage radius of rock fractures caused by CO2 phase transition impact was established based on Mises criterion and damage mechanics theory. The damage radius of rocks with different thicknesses of energy release sheet was simulated using 3DEC software, and compared with theoretical calculations to verify the accuracy of the established model. The influence of factors such as thickness of the energy release sheet, rock strength, diameter of borehole, and CO2 filling mass on rock damage was analyzed. The results show that the damage radius has a logarithmic growth relationship with the thickness of the energy release sheet and CO2 filling mass, and an exponential decay relationship with the rock strength and the diameter of borehole. Increasing the thickness of the energy release sheet is the most effective way to increase the damage radius. The increase in the diameter of the borehole will rapidly reduce the damage range of rock. It can provide references for the damage mechanism and technical parameter selection in CO2 phase trasition blasting.

参考文献/References:

[1]周盛涛, 罗学东, 蒋楠, 等. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报, 2021, 43(7): 883-893.
ZHOU S T, LUO X D, JIANG N, et al. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering, 2021, 43(7): 883-893.
[2]周西华, 门金龙, 宋东平, 等. 液态CO2爆破煤层增透最优钻孔参数研究[J]. 岩石力学与工程学报, 2016, 35(3): 524-529.
ZHOU X H, MEN J L, SONG D P, et al. Research on optimal borehole parameters of antireflection in coal seam by liquid CO2 blasting[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 524-529.
[3]孙小明.液态二氧化碳相变致裂掏槽破岩试验研究[J].煤炭科学技术, 2021, 49(8): 81-87.
SUN X M. Experimental study on cutting and rock breaking by liquid CO2 phase transition fracturing technology[J]. Coal Science and Technology, 2021, 49(8):81-87.
[4]孙可明, 辛利伟, 吴迪. 超临界CO2气爆煤体致裂机理实验研究[J].爆炸与冲击, 2018, 38(2): 302-308.
SUN K M, XIN L W, WU D. Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion [J]. Explosion and Shock Waves, 2018, 38(2): 302-308.
[5]孙可明, 辛利伟, 吴迪, 等. 初应力条件下超临界CO2气爆致裂规律研究[J].固体力学学报, 2017, 38(5): 473-482.
SUN K M, XIN L W, WU D, et al. Mechanism of fracture caused by supercritical CO2 explosion under the impact of initial stress[J]. Chinese Journal of Solid Mechanics, 2017, 38(5): 473-482.
[6]WANG H, CHENG Z, ZOU Q, et al. Elimination of coal and gas outburst risk of an outburst-prone coal seam using controllable liquid CO2 phase transition fracturing[J]. Fuel, 2021, 284: 119091.
[7]王杰, 张云鹏, 葛晓东, 等.液态CO2相变破岩参数及数值模拟研究[J].爆破器材, 2022, 51(4): 16-22.
WANG J, ZHANG Y P, GE X D, et al. Study on rock breaking parameters and numerical simulation of phase transition of liquid CO2 [J]. Explosive Materials, 2022, 51(4): 16-22.
[8]郭云龙, 李纪宝, 孙崔源, 等. 孔间距对二氧化碳相变爆破效果的影响模拟分析[J]. 铁道建筑, 2022, 62(6): 125-129.
GUO Y L, LI J B, SUN C Y, et al. Simulation analysis of influence of borehole spacing on effect of CO2 phase change blasting[J]. Railway Engineering, 2022, 62(6): 125-129.
[9]陈少波, 卢玉斌, 袁海梁, 等. 基于ANSYS/LS-DYNA的液态CO2相变破岩裂纹扩展特征研究[J].中国安全生产科学技术, 2023, 19(6): 74-82.
CHEN S B, LU Y B, YUAN H L, et al. Study on crack propagation characteristics of liquid CO2 phase transition rock breaking based on ANSYS/LS-DYNA [J]. China Production Safety Science and Technology, 2023, 19(6): 74-82.
[10]ZHANG W, XU K, LEI Y, et al. Evolutionary features in damage and destruction of gas-rich coal seam by CO2 phase-transition blasting [J]. Ekoloji, 2018, 27(106): 1605-1613.
[11]郭志兴. 液态二氧化碳爆破筒及现场试爆[J].爆破, 1994(3): 72-74.
[12]田泽础. 液态二氧化碳相变致裂裂缝形态及影响因素研究[D]. 徐州: 中国矿业大学, 2018.
TIAN Z C. Crack form and influencing factors of liquid carbon dioxide phase transition fracturing [D]. Xuzhou: China University of Mining and Technology, 2018.
[13]程选生, 刘华东, 张尚龙, 等.岩质路堑液态CO2相变爆破充装量的试验研究[J].土木工程学报, 2023, 56(7): 137-146.
CHENG X S, LIU H D, ZHANG S L, et al. Test on filling of liquid CO2 phase transition blasting in rock cutting [J]. China Civil Engineering Journal, 2023, 56 (7): 137-146.
[14]曾永庆. 二氧化碳致裂爆破振动效应研究[D]. 武汉: 中国科学院大学, 2019.
ZENG Y Q. Study on blasting vibration effect for carbon dioxide blasting [D]. Wuhan: University of Chinese Academy of Sciences, 2019.
[15]王文龙. 钻眼爆破[M]. 北京: 煤炭工业出版社, 1984.
[16]冷振东, 卢文波, 陈明, 等.岩石钻孔爆破粉碎区计算模型的改进[J].爆炸与冲击, 2015, 35(1): 101-107.
LENG Z D, LU W B, CHEN M, et al. Improvement calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101-107.
[17]HART R D. An introduction to distinct element modeling for rock engineering [J]. Analysis and Design Methods, 1993: 245-261.
[18]DENG X F, CHEN S G, ZHU J B, et al. UDECAUTODYN hybrid modeling of a large-scale underground explosion test [J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 737-747.
[19]ZHU W C, GAI D, WEI C H, et al. High-pressure air blasting experiments on concrete and implications for enhanced coal gas drainage[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1253-1263.

相似文献/References:

[1]范永波,乔继延,李世海,等.液态CO2多致裂管爆破同步性研究[J].爆破器材,2018,47(03):60.[doi:10.3969/j.issn.1001-8352.2018.03.012]
 FAN Yongbo,QIAO Jiyan,LI Shihai,et al.Study on Blasting Synchronization of Liquid CO2 Cardox Blasters[J].EXPLOSIVE MATERIALS,2018,47(06):60.[doi:10.3969/j.issn.1001-8352.2018.03.012]

备注/Memo

备注/Memo:
收稿日期:2024-03-18
基金项目:国家自然科学基金青年基金(41907261);重庆交通大学研究生科研创新项目(2022S0023);重庆市水利科技项目(CQSLK-2022015)
第一作者:阿比尔的(1988—),男,博士,副教授,主要从事岩石冲击损伤力学等领域的教学与科研工作。E-mail:abierdi@163.com
通信作者:傅林(1998—),男,硕士研究生,主要从事岩石冲击损伤力学等领域的研究工作。E-mail:cjfulin@163.com
更新日期/Last Update: 2024-12-05