[1]周盛涛, 罗学东, 蒋楠, 等. 二氧化碳相变致裂技术研究进展与展望[J]. 工程科学学报, 2021, 43(7): 883-893.
ZHOU S T, LUO X D, JIANG N, et al. A review on fracturing technique with carbon dioxide phase transition[J]. Chinese Journal of Engineering, 2021, 43(7): 883-893.
[2]周西华, 门金龙, 宋东平, 等. 液态CO2爆破煤层增透最优钻孔参数研究[J]. 岩石力学与工程学报, 2016, 35(3): 524-529.
ZHOU X H, MEN J L, SONG D P, et al. Research on optimal borehole parameters of antireflection in coal seam by liquid CO2 blasting[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 524-529.
[3]孙小明.液态二氧化碳相变致裂掏槽破岩试验研究[J].煤炭科学技术, 2021, 49(8): 81-87.
SUN X M. Experimental study on cutting and rock breaking by liquid CO2 phase transition fracturing technology[J]. Coal Science and Technology, 2021, 49(8):81-87.
[4]孙可明, 辛利伟, 吴迪. 超临界CO2气爆煤体致裂机理实验研究[J].爆炸与冲击, 2018, 38(2): 302-308.
SUN K M, XIN L W, WU D. Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion [J]. Explosion and Shock Waves, 2018, 38(2): 302-308.
[5]孙可明, 辛利伟, 吴迪, 等. 初应力条件下超临界CO2气爆致裂规律研究[J].固体力学学报, 2017, 38(5): 473-482.
SUN K M, XIN L W, WU D, et al. Mechanism of fracture caused by supercritical CO2 explosion under the impact of initial stress[J]. Chinese Journal of Solid Mechanics, 2017, 38(5): 473-482.
[6]WANG H, CHENG Z, ZOU Q, et al. Elimination of coal and gas outburst risk of an outburst-prone coal seam using controllable liquid CO2 phase transition fracturing[J]. Fuel, 2021, 284: 119091.
[7]王杰, 张云鹏, 葛晓东, 等.液态CO2相变破岩参数及数值模拟研究[J].爆破器材, 2022, 51(4): 16-22.
WANG J, ZHANG Y P, GE X D, et al. Study on rock breaking parameters and numerical simulation of phase transition of liquid CO2 [J]. Explosive Materials, 2022, 51(4): 16-22.
[8]郭云龙, 李纪宝, 孙崔源, 等. 孔间距对二氧化碳相变爆破效果的影响模拟分析[J]. 铁道建筑, 2022, 62(6): 125-129.
GUO Y L, LI J B, SUN C Y, et al. Simulation analysis of influence of borehole spacing on effect of CO2 phase change blasting[J]. Railway Engineering, 2022, 62(6): 125-129.
[9]陈少波, 卢玉斌, 袁海梁, 等. 基于ANSYS/LS-DYNA的液态CO2相变破岩裂纹扩展特征研究[J].中国安全生产科学技术, 2023, 19(6): 74-82.
CHEN S B, LU Y B, YUAN H L, et al. Study on crack propagation characteristics of liquid CO2 phase transition rock breaking based on ANSYS/LS-DYNA [J]. China Production Safety Science and Technology, 2023, 19(6): 74-82.
[10]ZHANG W, XU K, LEI Y, et al. Evolutionary features in damage and destruction of gas-rich coal seam by CO2 phase-transition blasting [J]. Ekoloji, 2018, 27(106): 1605-1613.
[11]郭志兴. 液态二氧化碳爆破筒及现场试爆[J].爆破, 1994(3): 72-74.
[12]田泽础. 液态二氧化碳相变致裂裂缝形态及影响因素研究[D]. 徐州: 中国矿业大学, 2018.
TIAN Z C. Crack form and influencing factors of liquid carbon dioxide phase transition fracturing [D]. Xuzhou: China University of Mining and Technology, 2018.
[13]程选生, 刘华东, 张尚龙, 等.岩质路堑液态CO2相变爆破充装量的试验研究[J].土木工程学报, 2023, 56(7): 137-146.
CHENG X S, LIU H D, ZHANG S L, et al. Test on filling of liquid CO2 phase transition blasting in rock cutting [J]. China Civil Engineering Journal, 2023, 56 (7): 137-146.
[14]曾永庆. 二氧化碳致裂爆破振动效应研究[D]. 武汉: 中国科学院大学, 2019.
ZENG Y Q. Study on blasting vibration effect for carbon dioxide blasting [D]. Wuhan: University of Chinese Academy of Sciences, 2019.
[15]王文龙. 钻眼爆破[M]. 北京: 煤炭工业出版社, 1984.
[16]冷振东, 卢文波, 陈明, 等.岩石钻孔爆破粉碎区计算模型的改进[J].爆炸与冲击, 2015, 35(1): 101-107.
LENG Z D, LU W B, CHEN M, et al. Improvement calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101-107.
[17]HART R D. An introduction to distinct element modeling for rock engineering [J]. Analysis and Design Methods, 1993: 245-261.
[18]DENG X F, CHEN S G, ZHU J B, et al. UDECAUTODYN hybrid modeling of a large-scale underground explosion test [J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 737-747.
[19]ZHU W C, GAI D, WEI C H, et al. High-pressure air blasting experiments on concrete and implications for enhanced coal gas drainage[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1253-1263.