[1]GE N N, WEI Y K, JI G F, et al. Initial decomposition of the condensed β-HMX under shock waves: molecular dynamics simulations [J]. Journal of Physical Chemistry B, 2012, 116(46): 13696-13704.
[2]朱伟, 刘冬梅, 肖继军, 等. 多组分高能复合体系的感度判据、热膨胀和力学性能的MD研究[J]. 含能材料, 2014, 22(5): 582-587.
ZHU W, LIU D M, XIAO J J, et al. Molecular dynamics study on sensitivity criterion,thermal expansion and mechanical properties of multi-component high energy systems [J]. Chinese Journal of Energetic Materials, 2014, 22(5): 582-587.
[3]HAN G, GOU R J, REN F D, et al. Theoretical investigation into the influence of molar ratio on binding energy, mechanical property and detonation performance of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazacyclo octane (HMX)/1-methyl-4, 5-dinitroimidazole (MDNI) cocrystal explosive[J]. Computational and Theoretical Chemistry, 2017, 1109: 27-35.
[4]刘冬梅, 赵丽, 肖继军, 等. 不同温度下HMX和RDX晶体的感度判别和力学性能预估: 分子动力学比较研究[J]. 高等学校化学学报, 2013, 34(11): 2558-2565.
LIU D M, ZHAO L, XIAO J J, et al. Sensitivity criterion and mechanical properties prediction of HMX and RDX crystals at different temperatures:comparative study with molecular dymamics simulation [J]. Chemistry Journal of Chinese Universities, 2013, 34(11): 2558-2565.
[5]悦征, 李志华, 魏成龙, 等. HMX/RDX复合物细化与热分解特性研究[J]. 火工品, 2021(1): 39-42.
YUE Z, LI Z H, WEI C L, et al. Refining and thermal decomposition of HMX/RDX complex [J]. Initiators & Pyrotechnics, 2021(1): 39-42.
[6]YE B S, GONG J, HU X Y, et al. Comparative investigation on the thermostability, sensitivity, and mechanical performance of RDX/HMX energetic cocrystal and its mixture[J]. Journal of Molecular Modeling, 2020, 26(7): 176.
[7]陶俊, 王晓峰, 赵省向, 等. CL20/HMX共晶与共混物的分子动力学模拟[J].含能材料, 2016, 24(4): 324-330.
TAO J, WANG X F, ZHAO S X, et al. Molecular dynamics simulation of CL20/HMX cocrystal and blends[J]. Chinese Journal of Energetic Materials, 2016, 24(4): 324-330.
[8]ZHANG L, YU Y, XIANG M Z. A study of the shock sensitivity of energetic single crystals by large-scale ab initio molecular dynamics simulations[J]. Nanomaterials, 2019, 9(9): 1251.
[9]高杰, 王红星, 金大勇, 等. DNAN/DNIF二元共熔物在热和机械刺激下的安全性研究[J]. 爆破器材, 2021, 50(3): 35-39.
GAO J, WANG H X, JIN D Y, et al. Safety of DNAN/DNIF binary eutectic under thermal stimulation and mechanical stimulation [J]. Explosive Materials, 2021, 50(3): 35-39.
[10]HANG G Y, YU W L, WANG T, et al. Theoretical investigations into effects of adulteration crystal defects on properties of CL-20/TNT cocrystal explosive [J]. Computational Materials Science, 2019, 156: 77-83.
[11]赵宏安, 胡荣祖, 王喜军, 等. 1,3,3-三硝基氮杂环丁烷的热安全性[J]. 化学学报, 2009, 67(22): 2536-2540.
ZHAO H A, HU R Z, WANG X J, et al. Thermal safety of 1,3,3trinitroazetidine [J]. Acta Chimica Sinica, 2009, 67(22): 2536-2540.
[12]胡荣祖, 赵凤起, 高红旭, 等.量热学基础与应用[M]. 北京: 科学出版社, 2011.
[13]杨犁, 余庚泽, 余晨, 等. 基于TKX50的PBXs含能材料力学性能计算模拟[J]. 实验技术与管理, 2021, 38(3): 61-68.
YANG L, YU G Z, YU C, et al. Computational simulation of mechanical properties of PBXs energetic materials based on TKX-50 [J]. Experiment Technology and Management, 2021, 38(3): 61-68.
[14]孙婷, 肖继军, 赵锋, 等. CL-20/DNB共晶基PBXs兼容性、界面作用和力学性能的MD模拟[J]. 含能材料, 2015, 23(4): 309-314.
SUN T, XIAO J J, ZHAO F, et al. Molecular dynamics simulation of compatibility, interface interactions and mechanical properties of CL-20/DNB cocrystal based PBXs[J]. Chinese Journal of Energetic Materials, 2015, 23(4): 309-314.
[15]吴雄, 龙新平,何碧, 等. VLW爆轰产物状态方程[J]. 中国科学B辑:化学, 2008, 38(12): 1129-1132.
WU X, LONG X P, HE B, et al. VLW equation of state for detonation products [J]. Science in China Series B: Chemistry, 2008, 38(12): 1129-1132.