[1]汪家甫.避免山岭隧道爆破超挖与欠挖的优化方法及应用[J].爆破器材,2024,53(06):50-57,64.[doi:10.3969/j.issn.1001-8352.2024.06.008]
 WANG Jiafu.Optimization Methods and Application for Over Excavation and Under Excavation Control in Mountain Tunnel Blasting[J].EXPLOSIVE MATERIALS,2024,53(06):50-57,64.[doi:10.3969/j.issn.1001-8352.2024.06.008]
点击复制

避免山岭隧道爆破超挖与欠挖的优化方法及应用()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年06
页码:
50-57,64
栏目:
爆破技术
出版日期:
2024-12-06

文章信息/Info

Title:
Optimization Methods and Application for Over Excavation and Under Excavation Control in Mountain Tunnel Blasting
文章编号:
5919
作者:
汪家甫
中铁十五局集团有限公司(湖北荆门,448000)
Author(s):
WANG Jiafu
China Railway Fifteenth Bureau Group Co., Ltd. (Hubei Jingmen, 448000)
关键词:
铁路隧道爆破超挖与欠挖最小抵抗线辅助眼周边眼
Keywords:
railway tunnel blasting over excavation and under excavation minimum resistance line auxiliary hole perimeter hole
分类号:
U455
DOI:
10.3969/j.issn.1001-8352.2024.06.008
文献标志码:
A
摘要:
针对襄阳-荆门高速铁路徐高岭隧道施工过程中出现的超、欠挖问题,采用三维数值模拟方法研究了爆破方案中最小抵抗线、辅助眼间距及周边眼间距等对爆破施工质量的影响规律。在原爆破参数优化分析的基础上,基于最小化平均线性超、欠挖量,确定了优化后的爆破参数。通过三维激光扫描技术对优化爆破参数后的施工质量进行了综合评价。结果表明:当最小抵抗线从60 cm增加到75 cm时,平均线性超挖减少了约63.6 %;当周边眼间距从40 cm增加到55 cm时,平均线性超挖减少了约77.8 %;当辅助眼间距从90 cm增加到105 cm时,平均线性超挖仅减少了20.0 %。采用优化后的爆破参数进行施工,三维激光扫描所得平均线性超挖与欠挖分别控制在8 cm与4 cm之内。爆破方法优化后,开挖与设计轮廓线吻合良好,实现了爆破施工质量的有效控制;现场爆破施工质量良好,避免了大面积的超、欠挖问题。
Abstract:
In response to the problems of over excavation and under excavation during the construction of Xugaoling Tunnel on Xiangyang-Jingmen high-speed railway, 3D numerical simulation technology was used to explore the impact of the minimum resistance line, auxiliary hole, and perimeter hole spacing on the quality of blasting construction in the blasting plan. Based on the optimization analysis of the original blasting parameters, the optimized blasting parameters were determined by minimizing the average linear over excavation and under excavation. Subsequently, a comprehensive evaluation of the construction quality using optimized blasting parameters was conducted through 3D laser scanning technology. The results indicate that when the minimum resistance line increases from 60 cm to 75 cm, the amount of over excavation decreases by about 63.6%. When the perimeter hole spacing increases from 40 cm to 55 cm, the amount of over excavation decreases by about 77.8%. When the auxiliary hole spacing increases from 90 cm to 105 cm, the amount of over excavation only decreases by 20.0%. Using optimized blasting parameters for construction, the average linear over excavation and under excavation obtained from 3D laser scanning are controlled within 8 cm and 4 cm, respectively. The excavation and design contour lines match well, achieving effective control of the quality of blasting construction. The optimized on-site blasting construction quality is excellent, avoiding the problem of large-scale over excavation and under excavation.

参考文献/References:

[1]马伟斌. 铁路山岭隧道钻爆法关键技术发展及展望[J]. 铁道学报, 2022, 44(3): 64-85.
MA W B. Development and prospects of key technologies in drilling and blasting methods for railway mountain tunnels [J]. Journal of the China Railway Society, 2022, 44(3): 64-85.
[2]谭忠盛, 吴金刚. 我国隧道钻爆法施工技术回顾与展望[J].隧道建设(中英文), 2023, 43(6): 899-920.
TAN Z S, WU J G. Review and prospects of drilling and blasting tunnel construction technology in China [J]. Tunnel Construction, 2023, 43(6): 899-920.
[3]陈玉, 黄国栋, 马龙浩, 等.砂岩隧道全断面光面爆破一次成形技术研究[J]. 地下空间与工程学报, 2021 (增刊1): 283-290.
CHEN Y, HUANG G D, MA L H, et al. Research on full-section smooth blasting one-time shaping technology for sandstone tunnels [J]. Chinese Journal of Underground Space and Engineering, 2021 (Suppl.1): 283-290.
[4]周杰. 软岩隧道光面爆破参数设计的数值模拟研究[J]. 成都大学学报(自然科学版), 2018, 37(4): 441-444.
ZHOU J. Numerical simulation study of smooth blasting parameter design for soft rock tunnel[J]. Journal of Chengdu University (Natural Science Edition), 2018, 37(4): 441-444.
[5]ZOU B, XU Z, WANG J, et al. Numerical investigation on influential factors for quality of smooth blasting in rock tunnels [J]. Advances in Civil Engineering, 2020, 2020 (14): 9854313.
[6]田兴朝, 陶铁军, 娄乾星, 等. 白竹山隧道爆破超挖原因分析与控制研究[J]. 工程爆破, 2022, 28(5):60-66.
TIAN X C, TAO T J, LOU Q X, et al. Cause analysis and control research on over excavation of Baizhushan Tunnel by blasting [J]. Engineering Blasting, 2022, 28(5): 60-66.
[7]TIAN X C, TAO T J, LIU X, et al. Calculation of hole spacing and surrounding rock damage analysis under the action of in situ stress and joints [J]. Scientific Reports, 2022, 12(1): 22331.
[8]郝广伟, 张万志, 李世堂, 等.不同循环进尺下水平层状岩隧道爆破成型研究[J].地下空间与工程学报, 2020 (增刊1): 316-322.
HAO G W, ZHANG W Z, LI S T, et al. Research on the shaping effect of horizontal layered rock tunnel under different blasting cyclical footage [J]. Chinese Journal of Underground Space and Engineering, 2020 (Suppl.1): 316-322.
[9]宿利平, 洪政, 谷桂丽, 等. 隧道掘进水封光面爆破装药结构的优化试验研究[J]. 爆破器材, 2023, 52(5): 44-49.
SU L P, HONG Z, GU G L, et al. Experimental study on optimization of charging structure for water sealed smooth blasting of tunnel excavation [J]. Explosive Materials, 2023, 52(5): 44-49.
[10]方秦, 孔祥振, 吴昊, 等.岩石Holmquist-Johnson-Cook模型参数的确定方法[J].工程力学, 2014, 31(3): 197-204.
FANG Q, KONG X Z, WU H, et al. Determining of Holmquist-Johnson-Cook constitutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197-204.
[11]林琛, 徐建军, 杨晋伟, 等.基于HJC模型的钢筋混凝土侵彻仿真失效准则与参数[J].探测与控制学报, 2017, 39(2): 100-105.
LIN C, XU J J, YANG J W, et al. The failure criterions and parameters of HJC model based perforation simulation [J]. Journal of Detection & Control, 2017, 39(2): 100-105.
[12]娄乾星, 陶铁军, 田兴朝, 等.基于HJC本构模型的石灰岩冲击破坏形态数值模拟方法研究[J]. 爆破, 2022, 39(4): 71-79.
LOU Q X, TAO T J, TIAN X C, et al. Research on numerical simulation method of limestone impact failure based on HJC constitutive model [J]. Blasting, 2022, 39(4): 71-79.
[13]李睿, 刘磊, 张志华, 等. 基于HJC模型高温后大理岩SHPB实验数值模拟研究[J]. 工程爆破, 2022, 28(1): 37-44.
LI R, LIU L, ZHANG Z H, et al. Numerical simulation study of marble damaged by high temperature in SHPB experiment based on HJC model [J]. Engineering Blasting, 2022, 28(1): 37-44.
[14]侯飞. HJC模型参数确定及隧道光面爆破炮孔间距优化[J]. 价值工程, 2023, 42(34): 81-83.
HOU F. Determination of HJC model parameters and optimization of tunnel smooth blasting hole spacing [J]. Value Engineering, 2023, 42(34): 81-83.
[15]秦桂芳, 曾灿, 徐间锋, 等. 基于HJC损伤本构模型的灰岩隧道光面爆破数值模拟及工程验证[J].爆破器材, 2022, 51(6): 45-51.
QIN G F, ZENG C, XU J F, et al. Numerical simulation and engineering verification of smooth blasting in limestone tunnel based on HJC damage constitutive model [J]. Explosive Materials, 2022, 51(6): 45-51.
[16]任亮, 喻贤明, 王凯, 等. 基于HJC模型的UHPC冲击压缩性能数值研究[J]. 应用力学学报, 2021, 38(5): 1910-1918.
REN L, YU X M, WANG K, et al. Numerical study on impact compression behavior of UHPC using HJC model[J]. Chinese Journal of Applied Mechanics, 2021, 38(5): 1910-1918.
[17]刘锦, 李峰辉, 刘秀秀. 基于HJC模型的煤岩冲击损伤特性研究[J]. 工程爆破, 2021, 27(2): 35-42, 65.
LIU J, LI F H, LIU X X. Study on impact damage characteristics of coal rock based on HJC model [J]. Engineering Blasting, 2021, 27(2): 35-42, 65.
[18]陶连金, 安林轩, 安军海, 等. 响应曲面法优化城市深埋隧道新意法设计参数[J].黑龙江科技大学学报, 2015, 25(4): 426-430.
TAO L J, AN L X, AN J H, et al. Study on optimization of ADECO-RS approach design parameters of urban deeply buried tunnels by response surface methodology[J]. Journal of Heilongjiang University of Science and Technology, 2015, 25(4): 426-430.
[19]CHEN Y, CHEN S, WU Z, et al. Optimization of genetic algorithm through use of back propagation neural network in forecasting smooth wall blasting parameters [J]. Mathematics, 2022, 10(8): 1271.
[20]李瑶, 禚一, 吴勇生, 等. 基于三维激光扫描技术的超欠挖算法在隧道开挖中的应用[J]. 铁道标准设计, 2021, 65(10): 200-204.
LI Y, ZHUO Y, WU Y S, et al. Application of over undercut algorithm in tunnel excavation based on 3D laser scanning technology [J]. Railway Standard Design, 2021, 65(10): 200-204.

相似文献/References:

[1]郑思友,翟廷海.工业雷管可靠起爆塑料导爆管试验研究[J].爆破器材,2010,39(02):29.
 ZHENG Siyou,Experimental Study on Detonating Plastic Nonel Tube Reliably by Industrial Detonator[J].EXPLOSIVE MATERIALS,2010,39(06):29.
[2]朱朝祥,吴岩,蔡伟,等.高温热凝结构爆破处理方法的探讨[J].爆破器材,2009,38(05):34.
 ZHU Chaoxiang,WU Yan,CAI Wei,et al.The Discussion of High Temperature Coagulum Processing Method by Demolition[J].EXPLOSIVE MATERIALS,2009,38(06):34.
[3]宋克健,龙源,胡新印,等.装药结构对药孔爆破初始压力及能量利用率的影响[J].爆破器材,2011,40(03):1.
 SONG Kejian,LONG Yuan,HU Xinyin,et al.The Influence of Charge Construction on the Initial Shock Pressure and the Utilization Ratio of Energy[J].EXPLOSIVE MATERIALS,2011,40(06):1.
[4]吕小师,王春玲,李高峰.锅炉炉膛结焦清除中的外部快速装药爆破技术[J].爆破器材,2011,40(04):19.
 L Xiaoshi,WANG Chunling,LI Gaofeng.External Fast Charge Blasting Techniques in Clearing Coking of Furnace Chamber[J].EXPLOSIVE MATERIALS,2011,40(06):19.
[5]王毅,杨军,徐振洋,等.RTK技术在露天矿布孔中的应用研究[J].爆破器材,2013,42(06):38.[doi:10.3969/j.issn.1001-8352.2013.06.008]
 WANG Yi,YANG Jun,XU Zhenyang,et al.Application Research of RTK in Open-pit Mine Hole Arrangement[J].EXPLOSIVE MATERIALS,2013,42(06):38.[doi:10.3969/j.issn.1001-8352.2013.06.008]
[6]宋日,郭占江,王丽杰.非洲AEL公司乳化炸药现场混制和装药技术分析[J].爆破器材,2008,37(04):11.
 Song Ri,Guo Zhanjiang,Wang Lijie.Analysis of Emulsion Explosive On-site Mixing and Loading Technology of African Explosives Limited (AEL)[J].EXPLOSIVE MATERIALS,2008,37(06):11.
[7]李金明,丁玉奎,可勇.利用聚能原理销毁危险弹药的试验方法[J].爆破器材,2008,37(03):37.
 Li Jinming,Ding Yukui,Ke Yong.The Test Method of Disposing Danger Ammuniti on by Using Gather Energy Theory[J].EXPLOSIVE MATERIALS,2008,37(06):37.
[8]于妍宁,徐振洋,郭连军,等.岩石动态特性对爆破振动能量分布的影响[J].爆破器材,2015,44(06):15.[doi:10.3969/j.issn.1001-8352.2015.06.004]
 YU Yanning,XU Zhenyang,GUO Lianjun,et al.Influence of Rock Dynamic Characteristics on Distribution of Blasting Vibration[J].EXPLOSIVE MATERIALS,2015,44(06):15.[doi:10.3969/j.issn.1001-8352.2015.06.004]
[9]赵春生①,费鸿禄②,胡刚②.循环爆破作用下岩体的不同步累积损伤测试方法[J].爆破器材,2019,48(02):57.[doi:10.3969/j.issn.1001-8352.2019.02.011]
 ZHAO Chunsheng,FEI Honglu,HU Gang.Asynchronous Accumulative Damage Testing Method of Rock under Cyclic Blasting[J].EXPLOSIVE MATERIALS,2019,48(06):57.[doi:10.3969/j.issn.1001-8352.2019.02.011]
[10]陈资,李昌.基于KPCA-WOA-ELM的爆破飞石距离预测[J].爆破器材,2022,51(02):47.[doi:10.3969/j.issn.1001-8352.2022.02.008]
 CHEN Zi,LI Chang.Prediction of Blasting Flyrock Distance Based on KPCA-WOA-ELM[J].EXPLOSIVE MATERIALS,2022,51(06):47.[doi:10.3969/j.issn.1001-8352.2022.02.008]

备注/Memo

备注/Memo:
收稿日期:2023-12-28
基金项目:中铁十五局集团有限公司科技研发项目(2023C7)
第一作者:汪家甫(1986—),男,高级工程师,主要从事高速铁路隧道钻爆法智能建造关键技术研究。E-mail:316335334@qq.com
更新日期/Last Update: 2024-12-05