[1]刘平①,雷钫琴①,余杰②,等.硝酸四氨合铜对n-Al/MoO3纳米铝热体系[J].爆破器材,2024,53(05):44-49,54.[doi:10.3969/j.issn.1001-8352.2024.05.007]
 LIU Ping,LEI Fangqin,YU Jie,et al.The Influence of TACN on the Reaction Characteristics of n-Al/MoO3?Nanothermite System[J].EXPLOSIVE MATERIALS,2024,53(05):44-49,54.[doi:10.3969/j.issn.1001-8352.2024.05.007]
点击复制

硝酸四氨合铜对n-Al/MoO3纳米铝热体系()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年05
页码:
44-49,54
栏目:
爆炸材料
出版日期:
2024-10-11

文章信息/Info

Title:
The Influence of TACN on the Reaction Characteristics of n-Al/MoO3?Nanothermite System
文章编号:
5914
作者:
刘平雷钫琴余杰刘旭文③④
①湖南神斧集团向红机械化工有限责任公司(湖南岳阳,414100)
②某部驻长沙地区军事代表室(湖南长沙, 410007)
③江汉大学精细爆破国家重点实验室(湖北武汉,430056)
④南京理工大学化学与化工学院(江苏南京,210094)
Author(s):
LIU Ping LEI Fangqin YU Jie LIU Xuwen③④
①Xianghong Mechanical and Chemical Co., Ltd., Hu’nan Shinehood Explosives Group (Hu’nan Yueyang, 414100)
②Military Representative Office in Changsha (Hu’nan Changsha, 410007)
③State Key Laboratory of Precision Blasting, Jianghan University (Hubei Wuhan, 430056)
④School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
n-Al/MoO3高能产气组分纳米铝热剂含能配合物
Keywords:
n-Al/MoO3 energetic gas-producing compound nanothermite energetic complex
分类号:
TQ560.7; TJ51
DOI:
10.3969/j.issn.1001-8352.2024.05.007
文献标志码:
A
摘要:
为了提高n-Al/MoO3纳米铝热体系的增压能力,改善能量释放性能,合成了高能产气组分硝酸四氨合铜(TACN),并将TACN复合入n-Al/MoO3体系中。利用扫描电子显微镜(SEM)、X-射线衍射(XRD)技术研究了复合材料的形貌和微观结构。采用差示扫描量热仪-热重分析(DSC-TG)联用技术探讨了各体系的热反应路径。使用高速摄像机和密闭爆发器分析了纳米铝热体系的火焰增长与传播和压力输出特性,评估了TACN的加入对n-Al/MoO3体系的能量释放速率和增压性能的影响。研究结果表明:n-Al/MoO3体系中加入的TACN能够在铝热反应的温度前放热分解,有效活化纳米铝与金属氧化物间的界面,从而降低体系的初始反应峰温度。此外,TACN的加入显著增强了n-Al/MoO3体系的能量释放和压力输出性能。当TACN的质量分数为6%时,n-Al/MoO3体系的火焰增长速率和火焰传播速率分别增加了32%和30%,峰值压力和增压速率分别提高了26%和70%。综上所述,TACN可提升n-Al/MoO3纳米铝热体系的压力输出,并调控体系的能量释放性能。
Abstract:
In order to enhance the boosting capability and improve the energy release performance of n-Al/MoO3 system, tetraamminecopper nitrate (TACN), a high-energy and gas-producing component, was synthesized and incorporated int n-Al/MoO3 system. The phases and microstructures of composite materials were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The thermal reaction pathways of each sample were explored by DSC-TG. High-speed photography and a closed bomb apparatus were employed to analyze the flame growth, propagation, and pressure output characteristics of the system, assessing the impact of TACN incorporation on the energy release rate and boosting performance of n-Al/MoO3 system. Results indicate that the introduced TACN in n-Al/MoO3 system can decompose prior to the aluminum exothermic reaction temperature, effectively promoting the activation of the interface between nano aluminum and metal oxides and reducing the main initial reaction temperature of the system. Furthermore, the introduction of TACN significantly enhances the energy release and pressure output performance of n-Al/MoO3 system. When the mass fraction of TACN is 6%, the flame growth rate and flame propagation rate of n-Al/MoO3 system increase by 32% and 30%, respectively, while the peak pressure and boosting rate elevate by 26% and 70%, respectively. In conclusion, the addition of TACN can enhance the pressure output of n-Al/MoO3 system and regulate the energy release performance of the system.

参考文献/References:

[1]LIU P, LI X Y, CHENG L, et al. Preparation and characterization of n-Al/FeF3 nanothermite [J]. Chemical Engineering Journal, 2018, 331: 850-855.
[2]DOMBROSKI D M B, WANG A Q, WEN J Z, et al. Joining and welding with a nanothermite and exothermic bonding using reactive multi-nanolayers: a review [J]. Journal of Manufacturing Processes, 2022, 75: 280-300.
[3]BEKHOUCHE S, TRACHE D, ABDELAZIZ A, et al. Preparation and characterization of MgAl-CuO ternary nanothermite system by arrested reactive milling and its effect on the thermocatalytic decomposition of cellulose nitrate [J]. Chemical Engineering Journal, 2023, 453(1): 139845.
[4]NIE H Q, TAN L P, PISHARATH S, et al. Nanothermite composites with a novel cast curable fluoropolymer [J]. Chemical Engineering Journal, 2021, 414: 128786.
[5]SHI K W, GUO X D, CHEN L, et al. Alcohol-thermal synthesis of approximately core-shell structured Al@CuO nanothermite with improved heat-release and combustion characteristics [J]. Combustion and Flame, 2021, 228: 331-339.
[6]李经纬, 朱晨光. BiOF的掺入对n-Al/CuO纳米铝热体系性能的影响[J]. 爆破器材, 2023, 52(4): 20-25.
LI J W, ZHU C G. Effect of BiOF addition on properties of n-Al/CuO nano-thermite system [J]. Explosive Materials, 2023, 52(4): 20-25.
[7]XU C H, ZHAO Z B, QIAO Z Q, et al. Reactivity of nanothermite-based micro energetic sticks prepared by direct ink writing [J]. Chemical Engineering Journal, 2022, 438: 135608.
[8]CHEN S H, YU H S, ZHANG W, et al. Sponge-like Al/PVDF films with laser sensitivity and high combustion performance prepared by rapid phase inversion [J]. Chemical Engineering Journal, 2020, 396: 124962.
[9]JULIEN B, CURE J, SALVAGNAC L, et al. Integration of gold nanoparticles to modulate the ignitability of nanothermite films [J]. ACS Applied Nano Materials, 2020, 3(3): 2562-2572.
[10]FAHD A, BARANOVSKY A, DUBOIS C, et al. Superior performance of quaternary NC/GO/Al/KClO4 nanothermite for high speed impulse small-scale propulsion applications [J]. Combustion and Flame, 2021, 232: 111527.
[11]WANG N, HU Y B, KE X, et al. Enhanced-absorption template method for preparation of double-shell NiO hollow nanospheres with controllable particle size for nanothermite application [J]. Chemical Engineering Journal, 2020, 379: 122330.
[12]LI Y X, HUSSAIN I, CHEN X, et al. Hybrid composites based on Al/CuO nanothermites and tetraamminecopper perchlorate for high-performance energetic mate-rials [J]. ACS Applied Nano Materials, 2023, 6(13): 12219-12230.
[13]KHASAINOV B, COMET M, VEYSSIERE B, et al. Comparison of performance of fast-reacting nanothermites and primary explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 754-772.
[14]ZHANG W, MA X J, SHEN R Q, et al. Progress on laserlinduced decomposition of explosives investigated by spectroscopic methods [J]. Applied Spectroscopy Reviews, 2014, 49(7): 550-563.
[15]GLAVIER L, NICOLLET A, JOUOT F, et al. Nanothermite/RDX-based miniature device for impact ignition of high explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(3): 308-317.
[16]KIM S B, KIM K J, CHO M H, et al. Micro and nanoscale energetic materials as effective heat energy sources for enhanced gas generators [J]. ACS applied materials & interfaces, 2016, 8(14): 9405-9412.
[17]ZHANG Z H, SHEN Y, WANG C A, et al. An excellent synergy between CL-20 and nanothermites in flaming and propelling with high specific impulse and superior safety to electrostatic discharge [J]. Combustion and Flame, 2022, 240: 112024.
[18]WU T, SEVELY F, JULIEN B, et al. New coordination complexes-based gas-generating energetic composites [J]. Combustion and Flame, 2020, 219: 478-487.
[19]PRAD-RE C, SUHARD S, VENDIER L, et al. Heterometallic Werner complexes as energetic materials [J]. Dalton Transactions, 2008(20): 2725-2731.
[20]BISWAS P, XU F Y, GHILDIYAL P, et al. In-situ thermochemical shock-induced stress at the metal/oxide interface enhances reactivity of aluminum nanoparticles [J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26782-26790.

备注/Memo

备注/Memo:
收稿日期:2023-12-19
基金项目:国家自然科学基金(22305100);湖北省国际科技合作计划项目(GJHZ2023000074);江汉大学一流学科建设重大研究专项(2023XKZ041)
第一作者:刘平(1983—),男,工程师,主要从事火炸药与火工品先进制造研究。E-mail: 40202094@qq.com
通信作者:刘旭文(1993—),男,讲师,硕导,主要从事含能材料的制备、性能及反应机理研究。E-mail: lxw@njust.edu.cn
更新日期/Last Update: 2024-10-10